
 ���

Chapter XII
Notes on the Emerging Science

of Software Evolution
Ladislav Samuelis

Technical University of Kosice, Slovakia

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

This chapter introduces the irreducibility principle within the context of computer science and software
engineering disciplines. It argues that the evolution, analysis, and design of the application software, which
represent higher level concepts, cannot be deduced from the underlying concepts, which are valid on a
lower level of abstractions. We analyze two specific sweeping statements often observed in the software
engineering community and highlight the presence of the reductionism approach being treated already in
the philosophy. We draw an analogy between the irreducibility principle and this approach. Furthermore,
we hope that deep understanding of the reductionism approach will assist in the correct application of
software design principles.

INtrODUctION

Dealing with continuously increasing software
complexity raises huge maintenance costs and
rapidly slows down implementation. One of the
main reasons why software is becoming more and
more complex is its flexibility, which is driven by
changing business rules or other volatile require-
ments. We note that this flexibility is rooted in the
generality of the programmable John von Neumann
machine. Due to these inevitable facts, which influ-
ence software development, the software systems’
complexity increases continuously. Recently, soft-

ware maintenance represents 45% of software cost
(Cartwright & Shepperd, 2000). This phenomenon
motivates researchers and practitioners to find
theories and practices in order to decrease the
maintenance cost and keep the software develop-
ment within reasonable managerial and financial
constraints. The notion of software evolution (which
is closely related and often interchanged with the
term maintenance) was already introduced in the
middle of the seventies when Lehman and Belady
examined the growth and the evolution of a number
of large software systems (Lehman & Belady, 1976).
They proposed eight laws, which are often cited in

���

Notes on the Emerging Science of Software Evolution

software engineering literature and are considered
as the first research results gained by observation
during the evolution of large software systems.

The term software evolution has emerged in
many research papers with roots both in computer
science and software engineering disciplines (e.g.,
Bennett & Rajlich, 2000). Nowadays, it has become
an accepted research area. In spite of the fact that
the science of software evolution is in its infancy,
formal theories are being developed and empirical
observations are compared to the predicted results.
Lehman’s second law states the following: “an evolv-
ing system increases its complexity unless work
is done to reduce it” (Lehman, 1980). Due to the
consequences of this law and due to the increased
computing power, the research in software and
related areas is being accelerated and very often
causes confusion and inconsistency in the used
terminology.

This chapter aims to discuss the observations
concerning evolution within the context of computer
science and software engineering. In particular,
it analyzes frictions in two sweeping statements,
which we observe reading research papers in com-
puter science, software engineering, and compares
them with reality. We will analyze them from the
reductionism point of view and argue that a design
created at a higher level—its algorithm—is specific
and in this sense it cannot be deduced from the laws,
which are valid on more fundamental levels. We
introduce a new term, the irreducibility principle,
which is not mentioned explicitly in the expert
literature within the context of computer science
and software engineering (to the best of our knowl-
edge). Finally, we summarize the ideas and possible
implications from a wider perspective.

sOME HIstOrIcAL NOtEs ON tHE
sOFtWArE EVOLUtION

Research on software evolution is discussed in many
software related disciplines. Topics of software
evolution are subjects of many conferences and

workshops, too. In the following paragraphs, we will
briefly characterize the scene in order to highlight
the interpretation of the notion of evolution in the
history of software technology.

The notions of program synthesis or automated
program construction are the first forerunners of
the evolution abstraction in software engineering.
Papers devoted to these topics could be found in, for
example, the research field of automated program
synthesis. Practical results achieved in the field
of programming by examples are summed up, for
example, in the book edited by Lieberman (2001).
The general principle of these approaches is based
on the induction principle, which is analyzed in
the work of Samuelis and Szabó in more details
(Samuelis & Szabó, 2006). The term evolution was
a synonym for automation of the program construc-
tion and for the discovery of reusable code—that
is, searching for loops.

Later on, when programming technologies
matured and program libraries and components
were established into practice, the research field
of pattern reuse (Fowler, 2000) and engineering
component-based systems (Angster, 2004) drove its
attention into theory and practice. In other words,
slight shift to component-based aspect is observed
in the course of the construction of programs. We
may say that the widely used term of customization
was stressed and this term also merged later with
the notion of evolution. Of course, this shift was
heavily supported by the object-oriented program-
ming languages, which penetrated into the industrial
practice during the 80s in the last century.

Since it was a necessity to maintain large and
more complex legacy systems, the topic of program
comprehension came into focus and became more
and more important. Program comprehension is an
activity drafted in the paper of Rajlich and Wilde
as: Program comprehension is an essential part of
software evolution and software maintenance: soft-
ware that is not comprehended cannot be changed.
The fields of software documentation, visualization,
program design, and so forth, are driven by the
need for program comprehension. Program com-

 ���

Notes on the Emerging Science of Software Evolution

prehension also provides motivation for program
analysis, refactoring, reengineering, and other
processes. (Rajlich & Wilde, 2002). A very relevant
observation concerning the comprehension is from
Jazayeri who says “Not the software itself evolves,
but our understanding and the comprehension of
the reality” (Jazayeri, 2005). This is in compliance
with the idea that our understanding of the domain
problem incrementally evolves and learning is an
indispensable part of program comprehension.

Rajlich, when dealing with the changing para-
digm of software engineering, stresses the impor-
tance of the concept location. He argues that the
volatility of the requirements is the result of the
developer’s learning. Thus, learning and under-
standing (or comprehension) are indispensably
coupled with the evolution (Rajlich, 2006). We add
that mental activities associated with understanding
are dealt within the cognitive sciences and it is im-
portant to realize that, for example, software design
concepts from certain higher level of abstractions
cannot be formalized.

The scattered results from the mentioned areas
lead to the attempt to establish the taxonomy of
software evolution (Buckley, Mens, Zenger, Rashid,
& Kniesel, 2005). Further areas of the contemporary
research, which deal more or less with the evolu-
tion concept, are software merging (Mens, 2002),
measurement of the flexibility and complexity of
the software (Eden & Mens, 2006), and software
visualization for reverse engineering (Koschke,
2000). It is also obvious that the evolution principle
in the biological interpretation heavily attracted and
influenced the research of the evolution in software
engineering. The paper written by Nehaniv, Hewitt,
Christianson, and Wernick critically warns the
software engineering community about the non-
obvious traps when the evolution principles valid
in biology are mechanically applied to the area
of software artifacts (Nehaniv et al., 2006). The
analysis of these fields deserves special attention
but examining them is not the aim of this chapter.

Summing up, the mentioned emerging disci-
plines are approaching the phenomenon of evolution

from various aspects of the systems’ analysis and
design. These short introductory notes have glanced
on the interlacing of software related disciplines
and how they mutually influence each other. These
approaches have their own history and theoretical
roots; they are in various branches of computer
science and treated from the philosophical point
of view, too (King & Kimble, 2004). It is guaran-
teed that new techniques and research areas will
emerge in the near future and further deal with the
phenomenon of evolution.

systEM, MODEL, AND
rEDUctIONIsM

Probably, the only unquestioned abstraction of the
system theory is the universe, that is, the existing
reality. This applies simultaneously and unambigu-
ously to two things. It refers to the concept of the
universe and the abstraction that our brain creates
about it. We are able to deal with the things of the
universe only through our abstractions about it
and this is a dichotomy that we cannot solve with
any argument.

Natural entities are existing units in reality,
which we can select from the environment based
on some written criteria. This unit may be for
instance, an engine, a building, or a description of
a complex banking system. A system is an entity
when it comprises sub-entities.

The human cognition happens always through
system-models. Modeling is always simplification
and a kind of identification between two different
systems. The cognitive human being creates a model
in piecemeal growth. We use the model in a way
that we run the model and this way we predict the
modeled system’s complex operation.

In the process of building the model, the fol-
lowing question rises naturally: Which features are
stressed and measured in a model? In practice, this
depends on the importance of a particular feature
in a given context. In other words, we selectively
omit features during the abstraction. We may also
deliberately omit or intentionally extend specific

���

Notes on the Emerging Science of Software Evolution

features. This is part of the learning process when
the acquisitions of new patterns are observed
through experience.

New models can be created in a revolutionary
or evolutionary manner. In essence, the difference
between these two definitions lies in the fact that
the non-incremental (revolutionary) approach is
based on one-shot experience and the incremental
(evolutionary) learning allows the learning pro-
cess to take place over time in a continuous and
progressive way, also taking into consideration
the history of the training sets during building the
inferred rules.

We may draw an analogy between these modes of
models-creation and the definitions of the s-type and
e-type softwares (Lehman & Ramil, 2001). Software
evolution is only related to the e-type per definition.
This type of software is influenced mainly with non-
functional attributes as: reliability, availability, fault
tolerance, testability, maintainability, performance,
software safety, and software security. In other words,
the e-type software has been influenced by unpredict-
able factors since the earliest stages of development
and that is why it is continuously evolving without
building it from the scratch.

We introduce the notion of reductionism, which
frames the irreducibility principle. Reductionism
generally says that the nature of complex things is
reduced to the nature of sums of simpler or more
fundamental things. In the following sections we
will focus on and will clarify the two following
sweeping statements that seem obvious at the first
sight: (1) Theory valid within the computer science
alleviates programming and (2) Programming is
coding. They are often applied among the research-
ers and practitioners working in the field of computer
science and software engineering.

stAtEMENt 1: tHEOry VALID
WItHIN tHE cOMPUtEr scIENcE
ALLEVIAtEs PrOGrAMMING

It is often argued misleadingly in research papers
that a specific theory valid within the computer

science alleviates programming or software design.
We introduce the notion of the organizational level
or levels of abstraction and map the science valid
within the computer to the lower level and the do-
main specific software to the higher level.

We argue that the sweeping statement: “Theory
valid within the computer science alleviates pro-
gramming” represents a typical reductionism ap-
proach. Actually, the analysis and design of software
systems cannot be traced back, for example, to the
state space of the computer’s internal memory. The
higher level of the abstraction has its own set of
limits, which are domain specific and cannot be
explained by the concepts, which are valid at lower
levels. The limits of software design at higher levels
cannot be reconstructed or predicted from the de-
scriptions of abstractions, which are valid on lower
levels. Naturally, we are able to follow causally the
whole sequence of events, which happen on lower
level, but this will not lead to solutions concerning
design decisions

In other words, lower level laws equal the laws
valid within a computer, and the aim of theoreti-
cal computer science is to reveal and establish the
appropriate theories which describe the analyzed
processes realized within the computer (e.g., au-
tomata theory). The functions valid at a higher
level (the behavior and the algorithms) cannot be
deduced back to a lower level. That is why it is an
illusion that the paradigms valid within a computer
can enhance the comprehension process and the
programming of the system at the domain (higher)
level. Of course, it is much better when somebody
understands both levels of abstraction. The owner
of such knowledge is in an advantageous position
since the specific domain knowledge is definitely
better underpinned.

Let us explain it through an analogy. As an
example, we could mention the knowledge of the
thermodynamics theory, which is valid within the
cylinder of an internal-combustion engine, does
not imply that we are able to construct an engine,
which is produced for embedding it into a specific
vehicle devoted to alleviate some work in a certain

 ���

Notes on the Emerging Science of Software Evolution

domain. It is also valid vice versa. It means that it
is impossible to obtain the answer on the direction
of vehicle’s movement from the thermodynamic
laws, which govern processes inside the cylinder.
That is why we have to draw a sharp line between
different abstraction (or organization) levels in order
to feasibly argue and manage the relevant questions
and tasks within that abstraction level (or domain).
This is called the irreducibility concept, which is
not a new idea in the theory of general evolution,
as mentioned earlier.

In the context of software engineering, we can
observe a similar situation; when applying the ob-
ject-oriented approach to the analysis of a specific
problem, we neglect the lower implementation
level (the computer domain). Vice versa, when we
investigate the domain of formal languages, then we
neglect the application domain. Both considerations
are also closely related to the pedagogical issue,
which says that first we have to ponder about the
domain problems and only later about the imple-
mentation details.

The mentioned sweeping statement can also be
explained in philosophical terms, namely it is in ac-
cordance with the reductionism approach, when the
nature of complex things is reduced to the nature
of sums of simpler or more fundamental concepts.
In the context of software, where we have several
strata of the complexities (Mittermeir, 2001), it is
obvious that the reductionism approach cannot be
applied.

stAtEMENt 2: PrOGrAMMING
Is cODING

This idea states that programming is a mere coding.
It is far from reality that constructing programs
equals coding. We are not going to summarize the
historic milestones of software engineering but
highlight that analyzing and designing software
systems are essentially about building a model of
reality, first of all. This activity is a complex set of
actions and involves work of domain experts and
specialists on the workflow management within the

software project development.
Generally, software systems are determined by

specifications or requirements, which are in fact sets
of limits (barriers) on the required functionalities.
We try to create a model of reality and to locate
concepts. Yes, it is also valid in the opposite way.
It is necessary to locate concepts in case we have a
legacy code and would like to implement modifica-
tions. This includes activities related to program
comprehension, which was mentioned earlier.

The core problem of the software development
is getting an intellectual grasp on the complexity of
the application. Software engineering is an empiri-
cal science because grasping requires experiments.
Algorithms give answers and solutions for questions
defined in a certain domain. These mechanisms
are valid for a particular domain and they cannot
be deduced from the underlying mechanisms valid
within a computer. Mechanisms depend on a lot of
project-specific criteria, such as the type, size, and
criticality of application. It is not only the speed of
running an application but, what is more important,
the speed of developing reliable software func-
tionality regardless of how fast it runs. From this
point of view, almost any improvements in a piece
of software could be viewed as an experimental
debugging, which aims to improve the code.

We may turn back and stress that the experimen-
tal feature is inherent for the e-type software. The
importance of the experiments or their ignorance,
for example, Ariane flight failure (Lann, 1997) is
underpinned with the already established experi-
mental software engineering institutions throughout
the world (Basili & Reiter, 1981). The more software
is produced, the more its importance is increased
on our everyday life. This fact highlights the de-
pendency of the so-called information society on
the reliable and robust software applications.

cONcLUsION

To conclude, knowledge of the laws, which govern
on the level within the computer, cannot predict the
aims (or outputs) of an application program, which

���

Notes on the Emerging Science of Software Evolution

is designed by the program (software) designer.
The analysis and design of the system (on a higher
organizational level) cannot be predicted from the
behavior of the laws, which are valid on the lower
organizational level. That is why mechanical tran-
sition of knowledge between the organizational
levels is considered harmful and the knowledge
transfer is irreversible. From another point of view,
this is a kind of servicing, when a lower organiza-
tional level serves the higher organizational level.
Services provided at the higher level cannot be
deduced from mechanisms valid for lower levels
(Bennett, 2004).

This chapter revealed rather old knowledge that
was purified within the context of software related
areas. We hope that the discussed ideas will focus the
attention of software engineers towards reconsid-
eration of the obviously claimed statements, which
are against the facts observed in reality.

AcKNOWLEDGMENt

This work is supported by the Slovak Scientific
Grant Agency: VEGA 1/0350/05—Knowledge-
based software life cycle and architecture.

rEFErENcEs

Angster, E. (2004). SDP-city against a vicious circle!
First Monday, 9(12). Retrieved February 28, 2004,
from http://firstmonday.org

Basili, V., & Reiter, R., Jr. (1981). A controlled
experiment quantitatively comparing software
development approaches. IEEE Transactions on
Software Engineering, 7(3), 299-320.

Bennett, K. (2004). Software evolution and the
future for flexible software. Paper presented at the
Erasmus University of Bari.

Bennett, K., & Rajlich, V. (2000). Software mainte-
nance and evolution: A roadmap. In A. Finkelstein

(Ed.), The future of software engineering (pp. 73-
90). Limerick, Ireland: ACM.

Buckley, J., Mens, T., Zenger, M., Rashid, A., &
Kniesel, G. (2005). Towards a taxonomy of software
change. Journal on Software Maintenance and Evo-
lution: Research and Practice, 17(5), 309-332.

Cartwright, M., & Shepperd, M. (2000). An em-
pirical investigation of an object-oriented software
system. IEEE Transactions on Software Engineer-
ing, 26(8), 786-796.

Eden, A. H., & Mens, T. (2006). Measuring software
flexibility. IEE Software, 153(3), 113-126.

Fowler, M. (2000). Analysis patterns: Reusable
object models. The Addison-Wesley Object Tech-
nology Series.

Jazayeri, M. (2005, September 5-6). Species evolve,
individuals age. Paper presented at the International
Workshop on Principles of Software Evolution,
ACM, Lisbon.

King, D., & Kimble, C. (2004). Uncovering the
epistemological and ontological assumptions of
software designers. In Proceedings 9e Colloque
de I’AIM, Evry, France.

Koschke, R. (2002). Software visualization for
reverse engineering. In S. Diehl (Ed.), Springer
lecture notes on computer science (LNCS) 2269:
Software visualization, state-of-the-art survey.

Lehman, M. M. (1980). On understanding laws,
evolution, and conservation in the large-program
life cycle. Journal of Systems and Software, 1(3),
213-231.

Lehman, M. M., & Belady, L. A. (1976). A model of
large program development. IBM Systems Journal,
15(3), 225-252.

Lehman, M. M., & Ramil, J. F. (2001). Evolution in
software and related areas. Paper presented at the
workshop IWPSE (pp. 1-16), Vienna Austria.

 ���

Notes on the Emerging Science of Software Evolution

Le Lann, G. (1997). An analysis of the Ariane 5
flight 501 failure—a system engineering perspec-
tive. Paper presented at the 10th IEEE Intl. ECBS
Workshop (pp. 339−346).

Lieberman, H. (Ed.). (2001). Your wish is my com-
mand, programming by example. Media Lab., MIT,
Academic Press.

Mens, T. (2002). A state-of-the-art survey on soft-
ware merging. IEEE Transactions on Software
Engineering, 28(5), 449-462.

Mittermeir, R. L. (2001). Software evolution—let’s
sharpen the terminology before sharpening (out-
of-scope) tools. Paper presented at the Workshop
IWPSE (pp. 114-120), Vienna, Austria.

Nehaniv, L. C., Hewitt, J., Christianson, B., &
Wernick, P. (2006). What software evolution and
biological evolution don’t have in common? Paper
presented at the Second International IEEE Work-
shop on Software Evolvability, IEEE, Philadelphia,
Pennsylvania, USA.

Rajlich, V. (2006). Changing the paradigm of soft-
ware engineering. Communications of the ACM,
49(8), 67-70.

Rajlich, V., & Wilde, N. (2002). The role of con-
cepts in program comprehension. In Proceedings
of the IEEE International Workshop on Program
Comprehension (pp. 271-278). IEEE Computer
Society Press.

Samuelis, L., & Szabó, C. (2006). Notes on the role
of the incrementality in software engineering. Univ.
Babes, Bolyai, Informatica, LI(2), 11-18.

KEy tErMs

Automatic Programming: The term identifies
a type of computer programming in which some
mechanism generates a computer program rather
than have human programmers write the code.

Induction: Induction or inductive reasoning is
the process of reasoning in which the premises of
an argument are believed to support the conclu-
sion but do not ensure it. It is used to formulate
laws based on limited observations of recurring
phenomenal patterns.

Irreversibility: Processes in general that are
not reversible are termed irreversible.

Reductionism: Is a philosophical theory that
asserts that the nature of complex things is reduced
to the nature of sums of simpler or more funda-
mental things.

Reusability: Reusability is the likelihood a
segment of source code can be used again to add
new functionalities with slight or no modification.
Reusable modules and classes reduce implementa-
tion time, increase the likelihood that prior testing
and use has eliminated bugs, and localizes code
modifications when a change in implementation
is required.

Software evolution: Software evolution refers
to the process of developing software initially, then
repeatedly updating it for various reasons.

Synthesis of Programs: Comprises a range
of technologies for the automatic generation of
executable computer programs from high-level
specifications of their behavior.

