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AbstrAct

This chapter introduces the irreducibility principle within the context of computer science and software 
engineering disciplines. It argues that the evolution, analysis, and design of the application software, which 
represent higher level concepts, cannot be deduced from the underlying concepts, which are valid on a 
lower level of abstractions. We analyze two specific sweeping statements often observed in the software 
engineering community and highlight the presence of the reductionism approach being treated already in 
the philosophy. We draw an analogy between the irreducibility principle and this approach. Furthermore, 
we hope that deep understanding of the reductionism approach will assist in the correct application of 
software design principles.

INtrODUctION

Dealing with continuously increasing software 
complexity raises huge maintenance costs and 
rapidly slows down implementation. One of the 
main reasons why software is becoming more and 
more complex is its flexibility, which is driven by 
changing business rules or other volatile require-
ments. We note that this flexibility is rooted in the 
generality of the programmable John von Neumann 
machine. Due to these inevitable facts, which influ-
ence software development, the software systems’ 
complexity increases continuously. Recently, soft-

ware maintenance represents 45% of software cost 
(Cartwright & Shepperd, 2000). This phenomenon 
motivates researchers and practitioners to find 
theories and practices in order to decrease the 
maintenance cost and keep the software develop-
ment within reasonable managerial and financial 
constraints. The notion of software evolution (which 
is closely related and often interchanged with the 
term maintenance) was already introduced in the 
middle of the seventies when Lehman and Belady 
examined the growth and the evolution of a number 
of large software systems (Lehman & Belady, 1976). 
They proposed eight laws, which are often cited in 
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software engineering literature and are considered 
as the first research results gained by observation 
during the evolution of large software systems. 

The term software evolution has emerged in 
many research papers with roots both in computer 
science and software engineering disciplines (e.g., 
Bennett & Rajlich, 2000). Nowadays, it has become 
an accepted research area. In spite of the fact that 
the science of software evolution is in its infancy, 
formal theories are being developed and empirical 
observations are compared to the predicted results. 
Lehman’s second law states the following: “an evolv-
ing system increases its complexity unless work 
is done to reduce it” (Lehman, 1980). Due to the 
consequences of this law and due to the increased 
computing power, the research in software and 
related areas is being accelerated and very often 
causes confusion and inconsistency in the used 
terminology. 

This chapter aims to discuss the observations 
concerning evolution within the context of computer 
science and software engineering. In particular, 
it analyzes frictions in two sweeping statements, 
which we observe reading research papers in com-
puter science, software engineering, and compares 
them with reality. We will analyze them from the 
reductionism point of view and argue that a design 
created at a higher level—its algorithm—is specific 
and in this sense it cannot be deduced from the laws, 
which are valid on more fundamental levels. We 
introduce a new term, the irreducibility principle, 
which is not mentioned explicitly in the expert 
literature within the context of computer science 
and software engineering (to the best of our knowl-
edge). Finally, we summarize the ideas and possible 
implications from a wider perspective.

sOME HIstOrIcAL NOtEs ON tHE 
sOFtWArE EVOLUtION

Research on software evolution is discussed in many 
software related disciplines. Topics of software 
evolution are subjects of many conferences and 

workshops, too. In the following paragraphs, we will 
briefly characterize the scene in order to highlight 
the interpretation of the notion of evolution in the 
history of software technology.

The notions of  program synthesis or automated 
program construction are the first forerunners of 
the evolution abstraction in software engineering. 
Papers devoted to these topics could be found in, for 
example, the research field of automated program 
synthesis. Practical results achieved in the field 
of programming by examples are summed up, for 
example, in the book edited by Lieberman (2001). 
The general principle of these approaches is based 
on the induction principle, which is analyzed in 
the work of Samuelis and Szabó in more details 
(Samuelis & Szabó, 2006). The term evolution was 
a synonym for automation of the program construc-
tion and for the discovery of reusable code—that 
is, searching for loops.

Later on, when programming technologies 
matured and program libraries and components 
were established into practice, the research field 
of pattern reuse (Fowler, 2000) and engineering 
component-based systems (Angster, 2004) drove its 
attention into theory and practice. In other words, 
slight shift to component-based aspect is observed 
in the course of the construction of programs. We 
may say that the widely used term of customization 
was stressed and this term also merged later with 
the notion of evolution. Of course, this shift was 
heavily supported by the object-oriented program-
ming languages, which penetrated into the industrial 
practice during the 80s in the last century.

Since it was a necessity to maintain large and 
more complex legacy systems, the topic of program 
comprehension came into focus and became more 
and more important. Program comprehension is an 
activity drafted in the paper of Rajlich and Wilde 
as: Program comprehension is an essential part of 
software evolution and software maintenance: soft-
ware that is not comprehended cannot be changed. 
The fields of software documentation, visualization, 
program design, and so forth, are driven by the 
need for program comprehension. Program com-
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prehension also provides motivation for program 
analysis, refactoring, reengineering, and other 
processes. (Rajlich & Wilde, 2002). A very relevant 
observation concerning the comprehension is from 
Jazayeri who says “Not the software itself evolves, 
but our understanding and the comprehension of 
the reality” (Jazayeri, 2005). This is in compliance 
with the idea that our understanding of the domain 
problem incrementally evolves and learning is an 
indispensable part of program comprehension.

Rajlich, when dealing with the changing para-
digm of software engineering, stresses the impor-
tance of the concept location. He argues that the 
volatility of the requirements is the result of the 
developer’s learning. Thus, learning and under-
standing (or comprehension) are indispensably 
coupled with the evolution (Rajlich, 2006). We add 
that mental activities associated with understanding 
are dealt within the cognitive sciences and it is im-
portant to realize that, for example, software design 
concepts from certain higher level of abstractions 
cannot be formalized.

The scattered results from the mentioned areas 
lead to the attempt to establish the taxonomy of 
software evolution (Buckley, Mens, Zenger, Rashid, 
& Kniesel, 2005). Further areas of the contemporary 
research, which deal more or less with the evolu-
tion concept, are software merging (Mens, 2002), 
measurement of the flexibility and complexity of 
the software (Eden & Mens, 2006), and software 
visualization for reverse engineering (Koschke, 
2000). It is also obvious that the evolution principle 
in the biological interpretation heavily attracted and 
influenced the research of the evolution in software 
engineering. The paper written by Nehaniv, Hewitt, 
Christianson, and Wernick critically warns the 
software engineering community about the non-
obvious traps when the evolution principles valid 
in biology are mechanically applied to the area 
of software artifacts (Nehaniv et al., 2006). The 
analysis of these fields deserves special attention 
but examining them is not the aim of this chapter.

Summing up, the mentioned emerging disci-
plines are approaching the phenomenon of evolution 

from various aspects of the systems’ analysis and 
design. These short introductory notes have glanced 
on the interlacing of software related disciplines 
and how they mutually influence each other. These 
approaches have their own history and theoretical 
roots; they are in various branches of computer 
science and treated from the philosophical point 
of view, too (King & Kimble, 2004). It is guaran-
teed that new techniques and research areas will 
emerge in the near future and further deal with the 
phenomenon of evolution.

systEM, MODEL, AND 
rEDUctIONIsM

Probably, the only unquestioned abstraction of the 
system theory is the universe, that is, the existing 
reality. This applies simultaneously and unambigu-
ously to two things. It refers to the concept of the 
universe and the abstraction that our brain creates 
about it. We are able to deal with the things of the 
universe only through our abstractions about it 
and this is a dichotomy that we cannot solve with 
any argument. 

Natural entities are existing units in reality, 
which we can select from the environment based 
on some written criteria. This unit may be for 
instance, an engine, a building, or a description of 
a complex banking system. A system is an entity 
when it comprises sub-entities. 

The human cognition happens always through 
system-models. Modeling is always simplification 
and a kind of identification between two different 
systems. The cognitive human being creates a model 
in piecemeal growth. We use the model in a way 
that we run the model and this way we predict the 
modeled system’s complex operation.

In the process of building the model, the fol-
lowing question rises naturally: Which features are 
stressed and measured in a model? In practice, this 
depends on the importance of a particular feature 
in a given context. In other words, we selectively 
omit features during the abstraction. We may also 
deliberately omit or intentionally extend specific 
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features. This is part of the learning process when 
the acquisitions of new patterns are observed 
through experience.

New models can be created in a revolutionary 
or evolutionary manner. In essence, the difference 
between these two definitions lies in the fact that 
the non-incremental (revolutionary) approach is 
based on one-shot experience and the incremental 
(evolutionary) learning allows the learning pro-
cess to take place over time in a continuous and 
progressive way, also taking into consideration 
the history of the training sets during building the 
inferred rules. 

We may draw an analogy between these modes of 
models-creation and the definitions of the s-type and 
e-type softwares (Lehman & Ramil, 2001). Software 
evolution is only related to the e-type per definition. 
This type of software is influenced mainly with non-
functional attributes as: reliability, availability, fault 
tolerance, testability, maintainability, performance, 
software safety, and software security. In other words, 
the e-type software has been influenced by unpredict-
able factors since the earliest stages of development 
and that is why it is continuously evolving without 
building it from the scratch.

We introduce the notion of reductionism, which 
frames the irreducibility principle. Reductionism 
generally says that the nature of complex things is 
reduced to the nature of sums of simpler or more 
fundamental things. In the following sections we 
will focus on and will clarify the two following 
sweeping statements that seem obvious at the first 
sight: (1) Theory valid within the computer science 
alleviates programming and (2) Programming is 
coding. They are often applied among the research-
ers and practitioners working in the field of computer 
science and software engineering.

stAtEMENt 1: tHEOry VALID 
WItHIN tHE cOMPUtEr scIENcE 
ALLEVIAtEs PrOGrAMMING

It is often argued misleadingly in research papers 
that a specific theory valid within the computer 

science alleviates programming or software design. 
We introduce the notion of the organizational level 
or levels of abstraction and map the science valid 
within the computer to the lower level and the do-
main specific software to the higher level. 

We argue that the sweeping statement: “Theory 
valid within the computer science alleviates pro-
gramming” represents a typical reductionism ap-
proach. Actually, the analysis and design of software 
systems cannot be traced back, for example, to the 
state space of the computer’s internal memory. The 
higher level of the abstraction has its own set of 
limits, which are domain specific and cannot be 
explained by the concepts, which are valid at lower 
levels. The limits of software design at higher levels 
cannot be reconstructed or predicted from the de-
scriptions of abstractions, which are valid on lower 
levels. Naturally, we are able to follow causally the 
whole sequence of events, which happen on lower 
level, but this will not lead to solutions concerning 
design decisions

In other words, lower level laws equal the laws 
valid within a computer, and the aim of theoreti-
cal computer science is to reveal and establish the 
appropriate theories which describe the analyzed 
processes realized within the computer (e.g., au-
tomata theory). The functions valid at a higher 
level (the behavior and the algorithms) cannot be 
deduced back to a lower level. That is why it is an 
illusion that the paradigms valid within a computer 
can enhance the comprehension process and the 
programming of the system at the domain (higher) 
level. Of course, it is much better when somebody 
understands both levels of abstraction. The owner 
of such knowledge is in an advantageous position 
since the specific domain knowledge is definitely 
better underpinned.

Let us explain it through an analogy. As an 
example, we could mention the knowledge of the 
thermodynamics theory, which is valid within the 
cylinder of an internal-combustion engine, does 
not imply that we are able to construct an engine, 
which is produced for embedding it into a specific 
vehicle devoted to alleviate some work in a certain 
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domain. It is also valid vice versa. It means that it 
is impossible to obtain the answer on the direction 
of vehicle’s movement from the thermodynamic 
laws, which govern processes inside the cylinder. 
That is why we have to draw a sharp line between 
different abstraction (or organization) levels in order 
to feasibly argue and manage the relevant questions 
and tasks within that abstraction level (or domain). 
This is called the irreducibility concept, which is 
not a new idea in the theory of general evolution, 
as mentioned earlier.

In the context of software engineering, we can 
observe a similar situation; when applying the ob-
ject-oriented approach to the analysis of a specific 
problem, we neglect the lower implementation 
level (the computer domain). Vice versa, when we 
investigate the domain of formal languages, then we 
neglect the application domain. Both considerations 
are also closely related to the pedagogical issue, 
which says that first we have to ponder about the 
domain problems and only later about the imple-
mentation details.

The mentioned sweeping statement can also be 
explained in philosophical terms, namely it is in ac-
cordance with the reductionism approach, when the 
nature of complex things is reduced to the nature 
of sums of simpler or more fundamental concepts. 
In the context of software, where we have several 
strata of the complexities (Mittermeir, 2001), it is 
obvious that the reductionism approach cannot be 
applied.

stAtEMENt 2: PrOGrAMMING 
Is cODING

This idea states that programming is a mere coding. 
It is far from reality that constructing programs 
equals coding. We are not going to summarize the 
historic milestones of software engineering but 
highlight that analyzing and designing software 
systems are essentially about building a model of 
reality, first of all. This activity is a complex set of 
actions and involves work of domain experts and 
specialists on the workflow management within the 

software project development. 
Generally, software systems are determined by 

specifications or requirements, which are in fact sets 
of limits (barriers) on the required functionalities. 
We try to create a model of reality and to locate 
concepts. Yes, it is also valid in the opposite way. 
It is necessary to locate concepts in case we have a 
legacy code and would like to implement modifica-
tions. This includes activities related to program 
comprehension, which was mentioned earlier. 

The core problem of the software development 
is getting an intellectual grasp on the complexity of 
the application. Software engineering is an empiri-
cal science because grasping requires experiments. 
Algorithms give answers and solutions for questions 
defined in a certain domain. These mechanisms 
are valid for a particular domain and they cannot 
be deduced from the underlying mechanisms valid 
within a computer. Mechanisms depend on a lot of 
project-specific criteria, such as the type, size, and 
criticality of application. It is not only the speed of 
running an application but, what is more important, 
the speed of developing reliable software func-
tionality regardless of how fast it runs. From this 
point of view, almost any improvements in a piece 
of software could be viewed as an experimental 
debugging, which aims to improve the code.

We may turn back and stress that the experimen-
tal feature is inherent for the e-type software. The 
importance of the experiments or their ignorance, 
for example, Ariane flight failure (Lann, 1997) is 
underpinned with the already established experi-
mental software engineering institutions throughout 
the world (Basili & Reiter, 1981). The more software 
is produced, the more its importance is increased 
on our everyday life. This fact highlights the de-
pendency of the so-called information society on 
the reliable and robust software applications. 

cONcLUsION

To conclude, knowledge of the laws, which govern 
on the level within the computer, cannot predict the 
aims (or outputs) of an application program, which 
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is designed by the program (software) designer. 
The analysis and design of the system (on a higher 
organizational level) cannot be predicted from the 
behavior of the laws, which are valid on the lower 
organizational level. That is why mechanical tran-
sition of knowledge between the organizational 
levels is considered harmful and the knowledge 
transfer is irreversible. From another point of view, 
this is a kind of servicing, when a lower organiza-
tional level serves the higher organizational level. 
Services provided at the higher level cannot be 
deduced from mechanisms valid for lower levels 
(Bennett, 2004).

This chapter revealed rather old knowledge that 
was purified within the context of software related 
areas. We hope that the discussed ideas will focus the 
attention of software engineers towards reconsid-
eration of the obviously claimed statements, which 
are against the facts observed in reality. 
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KEy tErMs

Automatic Programming: The term identifies 
a type of computer programming in which some 
mechanism generates a computer program rather 
than have human programmers write the code.

Induction: Induction or inductive reasoning is 
the process of reasoning in which the premises of 
an argument are believed to support the conclu-
sion but do not ensure it. It is used to formulate 
laws based on limited observations of recurring 
phenomenal patterns.

Irreversibility: Processes in general that are 
not reversible are termed irreversible.

Reductionism: Is a philosophical theory that 
asserts that the nature of complex things is reduced 
to the nature of sums of simpler or more funda-
mental things.

Reusability: Reusability is the likelihood a 
segment of source code can be used again to add 
new functionalities with slight or no modification. 
Reusable modules and classes reduce implementa-
tion time, increase the likelihood that prior testing 
and use has eliminated bugs, and localizes code 
modifications when a change in implementation 
is required.

Software evolution: Software evolution refers 
to the process of developing software initially, then 
repeatedly updating it for various reasons.

Synthesis of Programs: Comprises a range 
of technologies for the automatic generation of 
executable computer programs from high-level 
specifications of their behavior. 




