
 ���

Chapter XVI
Some Method Fragments for
Agile Software Development

Q.N.N. Tran
University of Technology, Sydney, Australia

B. Henderson-Sellers
University of Technology, Sydney, Australia

I. Hawryszkiewycz
University of Technology, Sydney, Australia

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

The use of a situational method engineering approach to create agile methodologies is demonstrated.
Although existing method bases are shown to be deficient, we take one of these (that of the OPEN Process
Framework) and propose additional method fragments specific to agile methodologies. These are derived
from a study of several of the existing agile methods, each fragment being created from the relevant pow-
ertype pattern as standardized in the Australian Standard methodology metamodel of AS 4651.

INtrODUctION

It is increasingly recognized that a universally appli-
cable methodology (a.k.a. method) for software (and
systems) development is not possible (Brooks, 1987;
Avison & Wood-Harper, 1991; Fitzgerald, Russo,
& O’Kane, 2003). One way to approach this is to
eschew all attempts to create and promote a single
methodology but instead to create a repository (or
methodbase: Saeki, Iguchi, Wen-yin, & Shinohara,
1993) containing a large number of method frag-

ments gleaned from a study of other methodologies,
an evaluation of best industry practice, and so forth.
Situational methods (Kumar & Welke, 1992; Odell,
1995) are then constructed by a method engineer
“bottom up” from these fragments in such a way
that they are “tailored” to the process requirements
of the industry in question. This is the method en-
gineering (ME) or situational method engineering
(SME) approach to methodologies.

A second thread of relevance is the increasing
interest, both in academe and industry, of agile

���

Some Method Fragments for Agile Software Development

methods—methodological approaches to software
development that tend to the minimalistic, focus on
people rather than documented processes, and react
well to rapidly changing requirements (Abrahams-
son, Warsta, Siponen, & Ronkainen, 2003; Turk,
France, & Rumpe, 2005). However, as published and
often as practiced, these agile methods themselves
may be overly rigid. To make them more flexible and
possess so-called “dual agility” (Henderson-Sellers
& Serour, 2005), a method engineering approach
can be applied to agile methods as well as more
traditional software development approaches. To
do so, it is incumbent upon the method engineers
who provide the method bases to ensure that these
repositories of method fragments contain adequate
fragments from which a range of agile methods can
indeed be constructed.

In this chapter, we hypothesize that an agile
method can be created from method fragments, once
those fragments have been identified and appropri-
ately documented. Following an introduction to the
general characteristics of agile software develop-
ment, we then examine an underpinning metamodel
(AS4651). We then identify and document method
fragments that conform to this metamodel and
that support a range of agile methods including
XP, Crystal, Scrum, ASD, SDSM, and FDD. We
thus propose the addition of these newly document
fragments to one extensive ME repository, that of
the OPEN Process Framework (OPF) (Firesmith &
Henderson-Sellers, 2002; http://www.opfro.org),
chosen on the basis of it having the most extensive
content in its methodbase. An important part of
any such research is the validation phase. This is
described in the complementary chapter (Tran, Hen-
derson-Sellers, & Hawryszkiewycz, 2007), where
we (re-)create four agile methods from the fragments
in the newly enhanced OPF methodbase.

GENErAL cHArActErIstIcs OF
AGILE sOFtWArE DEVELOPMENt

Although each agile development methodology is
distinct, they do share some common characteris-

tics. Agile development adheres to the following
fundamental values (Agile Manifesto, 2001):

• Individuals and interactions should be more
important than processes and tools.

• Working software should be more important
than comprehensive documentation.

• Customer collaboration should be more
important than contract negotiation.

• Responding to change should be more im-
portant than following a plan.

Firstly, agile development emphasizes the rela-
tionship and communality of software developers,
as opposed to institutionalized processes and devel-
opment tools. Valuing people over processes allows
for more creativity in solutions. In the existing agile
practices, this value manifests itself in close team
relationships, close working environment arrange-
ments, and other procedures boosting team spirit.
The importance of teamwork to agile development
has been emphasized by agilists (Cockburn & High-
smith, 2001; Highsmith & Cockburn, 2001).

Secondly, an important objective of the software
team is to continuously produce tested working
software. It is argued that documentation, while
valuable, takes time to write and maintain, and
is less valuable than a working product. Some
agile methodologies promote prototyping (e.g.,
ASD), while others encourage building simple but
completely functional products quickly as possible
(e.g., XP).

Thirdly, customer involvement is promoted in
all agile methodologies. The relationship and co-
operation between the developers and the clients
are given the preference over strict contracts. The
clients are encouraged to actively participate in the
development effort.

Fourthly, the developers must be prepared to
make changes in response to the emerging/chang-
ing needs during the development process. Any
plan must be lightweight and easily modifiable. The
“plan” might simply be a set of post-it notes on a
whiteboard (e.g., as in Scrum: Schwaber, 1995).

 ���

Some Method Fragments for Agile Software Development

Boehm (2002) presents a comparison (Table
1) between agile development and conventional
process-oriented development (or plan-driven as
he calls them). This comparison helps to highlight
further characteristics of agile methodologies.
While many method fragments were identified in
the era of plan-driven methodologies, the atomic
nature of these method fragments should mean
that they are equally usable for the creation of agile
methods. Indeed, this is amply demonstrated in
empirical studies (Henderson-Sellers & Serour,
2005), which illustrated how several Sydney-based
organizations have successfully created an agile
situational method.

In our research project, we aim to identify
method fragments for supporting agile develop-
ment by examining:

• The characteristics of agile development
described above; and

• The existing prominent agile methodolo-
gies, namely XP, Scrum, adaptive software
development (ASD), dynamic systems de-
velopment methodology (DSDM), Crystal
methodologies, and feature driven develop-
ment (FDD).

In this chapter, only method fragments ex-
tracted from the general agility characteristics
and XP, Scrum, Crystal clear, and Crystal orange
are listed.

tHE UNDErPINNING MEtAMODEL
AND AVAILAbLE rEPOsItOry

When method fragments are extracted from a meth-
odology, they need to conform to some standard.
Here, we ensure that they conform to an official
Australian Standard, AS 4651 (Standards Australia,
2004)—a standard metamodel for development
methodologies that has recently been “international-
ized” through the normal ISO process resulting in the
international standard ISO/IEC 24744 in 2007.

Both AS 4651 (as described here) and the newer
ISO/IEC 24744 use two important architectural
elements that are outlined here: powertypes and a
multi-level architecture aligned with the informa-
tion systems/business domain in which software
development takes place (Note that in ISO/IEC
24744, some of the metaclass names are slightly
different from those in AS 4651. Here we use the
AS 4651 names).

The overall architecture is shown in Figure 1. The
three layers reflect best practice and are organized
to match the conceptual concerns of various sub-
groups within the software engineering community.
People working on an endeavour (e.g., a specific
software development project) (in the “endeavour
layer”) utilize methodologies, tools and so forth,
which are all defined in the “method layer.” This
pair of layers is all the software development team is
concerned with. However, a different pair of layers
is of interest to methodologists, method engineers,
and tool builders: the method layer together with

Table 1. Comparison of agile and plan-driven methods

���

Some Method Fragments for Agile Software Development

the metamodel layer. It is this last (metamodel)
layer that forms the basis and foundation for the
others. This layer contains all the rule-focussed
information necessary for creating methods, tools,
and so forth.

The multilayer architecture reflects best practice
and is no longer governed by the is-an-instance-of
relationship as in the OMG’s strict metamodelling
hierarchy. Classes belong to the most “natural”
layer as defined by the software engineering group
of people most likely to be interested in their defi-
nition and usage. In particular, we wish to define
(and standardize) certain abstract features of meth-
odology elements in such a way that their subtypes
can be defined in the method layer rather than the
metamodel layer. We also wish to be able to allocate
values to some attributes at the method layer while
leaving other attributes without values until the
endeavour layer, that is, for attributes to straddle
two layers—not possible with current, traditional
instantiation-based metalevel architectures (such as
that employed by the OMG). To accomplish both
these goals, we introduce the notion of a powertype
(Odell, 1994)—the current most promising solution.
A powertype is a class that has instances that are
subtypes of another class (the partitioned class).
Together the powertype class and the partitioned
class form a powertype pattern (Henderson-Sellers
& Gonzalez-Perez, 2005a, b).

A powertype pattern (as used in AS 4651) is

shown in the metamodel layer of Figure 2. In this
example, the powertype class is DocumentKind
and the partitioned class is document. This means
that there is a generalization relationship across
layers, between (here) requirements specification
document and its supertype Document as well as
the more regular instantiation relationship (here
between requirements specification document and
the DocumentKind class in the metamodel layer). In
other words, requirements specification document
is concurrently an object (an instance of Document-
Kind) and a class (a subtype of document). Such
an entity was called by Atkinson (1998) a “clab-
ject”—clabjects are an essential component of the
powertype approach. In this example, as an instance
of DocumentKind, requirements specification docu-
ment has attribute values of name=requirements
specification document and MustBeApproved=Yes.
It also has attributes derived from its subtyping of
document (title and version) that need to be given
values at the endeavour level. To do this, they are
first transmitted unchanged via the generalization
relationship from document to requirements speci-
fication document. An object in the endeavour layer
called, say, “MySystem” requirements specification,
then instantiates requirements specification docu-
ment (in the method layer), consequently allocating
values to these attributes—here the values are shown
(in Figure 2) as Title=“MySystem” Requirements
Specification and Version=1.1.

endeavour

method

metamodel

endeavourendeavour

methodmethod

metamodelmetamodel

endeavour

method

metamodel

endeavourendeavour

methodmethod

metamodelmetamodel

Figure 1. Schematic of the architecture underpinning AS 4651

 ���

Some Method Fragments for Agile Software Development

Note that the suffix “Kind” is used to represent
an element belonging to a methodology, which needs
to be distinguished from an element that belongs to
a particular endeavour. For example, “Producer”
refers to people involved in a particular systems
development project, while “ProducerKind” refer
to kinds of producers described by the methodol-
ogy used by that project. Note that project-level
elements must be instances of some methodology-
level elements. In this report, we only use *kind
fragments, because we focus on the methodology
level, not the project level.

The overall architecture of AS 4651 (and ISO/
IEC 24744) is shown in Figure 3. Most of the classes
in the metamodel participate in powertype patterns
(left hand side) although some do not (right hand
side). The instances of these latter classes are used at
the method level as endeavour-independent sources
of information rather than as classes from which
instances can be created for a particular endeavour,
for example, a programming language. These two
categories were named templates and resources,
respectively in Gonzalez-Perez and Henderson-
Sellers (2005).

We will now describe in more detail each of the
metaclasses that are relevant to agile fragments—the
focus of this chapter.

Producer-related Metaclasses

A producer is an agent that executes work units. A
ProducerKind is a specific kind of producer, char-
acterized by its area of expertise. The ProducerKind
class is specialized into TeamKind, ToolKind, and
RoleKind.

A team is an organized set of producers that
collectively focus on common work units. A Team-
Kind is a specific kind of team, characterized by its
responsibilities. A role is a collection of responsi-
bilities that a producer can take. A RoleKind is a
specific kind of role, characterized by the involved
responsibilities. A tool is an instrument that allows
another producer to perform a work unit in an au-
tomated way. A ToolKind is a specific kind of tool,
characterized by its features.

WorkProduct-related Metaclasses

A WorkProduct is an artefact of interest for the
project. A WorkProductKind is a specific kind of

endeavour

method

endeavourendeavour

methodmethod

metamodel

“MySystem” requirements specification
Title=“MySystem” Req. Spec.
Version=Version �.�

Requirements Specification Document
Title
Version
Name=Req. Spec. Document
MustBeApproved=Yes

Document
Title
Version

DocumentKind
Name
MustBeApproved

endeavour

method

endeavourendeavour

methodmethod

metamodel

“MySystem” requirements specification
Title=“MySystem” Req. Spec.
Version=Version �.�

Requirements Specification Document
Title
Version
Name=Req. Spec. Document
MustBeApproved=Yes

Document
Title
Version

DocumentKind
Name
MustBeApproved

Figure 2. Powertype pattern showing how some attributes from the metamodel layer are instantiated at
the model layer and others at the endeavour layer

���

Some Method Fragments for Agile Software Development

work product, characterized by the nature of its
contents and the intention behind its usage. It is
specialized into DocumentKind and ModelKind.
A document is a durable depiction of a fragment of
the observed reality. A DocumentKind is a specific
kind of document, characterized by its structure,
type of content and purpose. It can contain other
documents, recursively. In contrast, a model is a
formal representation of some subject that acts as
its surrogate for some well defined purpose. A Mod-
elKind is a specific kind of model, characterized by
its focus, purpose, and level of abstraction.

Although not directly needed in our current
study, it is of interest to note that a ModelUnit is
an atomic component of a model, representing a
cohesive fragment of information in the subject
modelled. A ModelUnitKind is a specific kind

of model unit, characterized by the nature of the
information it represents and the intention of us-
ing such representation. It allows a wide variety of
subtypes; in particular, it supports the generation of
all the metaclasses of a modeling language, assum-
ing that modeling language definition has a “top”
class equivalent to ModelUnitKind (e.g., the class
element in UML Version 1.4 and 2.0)

stage-related Metaclasses

A Stage is a managed time frame within a project.
A StageKind is a specific kind of stage, character-
ized by the abstraction level at which it works on
the project and the result that it aims to produce.

MethodologyElement

+Purpose
+MinCapabilityLevel

WorkUnitKindProducerKind

+Name
Template Resource

+Name
Language

+Name
Notation

ProjectElement

WorkUnitProducerStage

StageKind etc.

etc.

etc.

MethodologyElement

+Purpose
+MinCapabilityLevel

WorkUnitKindProducerKind

+Name
Template Resource

+Name
Language

+Name
Notation

ProjectElement

WorkUnitProducerStage

StageKind etc.

etc.

etc.

Figure 3. Overall architecture of AS 4651

 ���

Some Method Fragments for Agile Software Development

WorkUnit- and Workflow-Related
Metaclasses

There are two other groups of metaclasses of impor-
tance: WorkUnit and Workflow are the supertypes
in question. Their definitions and the descriptions
of agile method fragments conforming to these
metaclasses will be discussed in a subsequent
chapter of this book (Tran et al., 2007).

Discussion of OPF and its
repository

In order to capitalize on the use of method frag-
ments, they need to be accumulated in a reposi-
tory—here we utilize the repository of the OPEN
Process Framework (OPF) (Henderson-Sellers &
Graham, 1996; Firesmith & Henderson-Sellers,
2002), an example of an SME approach that uses
the AS 4651 metamodelling approach. As well
as the metamodel, the OPF also contains a well
populated method fragment repository (see also
http://www.opfro.org). The combination of the
extensive methodbase content and the metamodel
make OPF the best choice as the starting point for
this investigation of agile method engineering.

The original work on the OPF was focussed on
the necessary fragment support for object-oriented
software development, although more recently it
has been enhanced in order to support:

• Organizational transition (Henderson-Sellers
& Serour, 2000; Serour, Henderson-Sellers,
Hughes, Winder, & Chow, 2002)

• Web development (Haire, Henderson-Sellers,
& Lowe, 2001; Henderson-Sellers, Haire, &
Lowe, 2002)

• Component-based development (Henderson-
Sellers, 2001)

• Agent-oriented development (Debenham &
Henderson-Sellers, 2003; Henderson-Sellers,
Giorgini, & Bresciani, 2004)

• Usage-centered design (Henderson-Sellers &
Hutchison, 2003)

• Model transformations based on MDA (Pastor,
Molina, & Henderson-Sellers, 2005)

• Aspect-oriented design (Henderson-Sellers,
France, Georg, & Reddy, 2007)

Here, we first evaluate what current support is
available for a range of agile methods. When the
support is not available (in terms of a fragment held
in the methodbase), we propose the addition of a new
fragment, documented in the OPF standard style
including alphabetical ordering (see Appendixes).

NEWLy IDENtIFIED FrAGMENts tO
sUPPOrt AGILE
DEVELOPMENt

This study has identified a large number of new
fragments that could be considered for addition to
the current OPF repository/method base. These are
summarized in the following sections (and in Table
2) and are detailed in Appendices A-E in terms of the
metaclass from which they are generated. Although
listed in Table 2, those fragments in the context of
WorkUnits and Workflows are not discussed here
– details are to be found in the companion chapter
(Tran et al., 2007).

Producer Fragments

There are three kinds of producer fragments: those
from TeamKind, those derived from RoleKind, and
those derived from ToolKind (These may also be
constructed based on a set of coherent, identified
responsibilities, since responsibility is an attribute
of RoleKind).

TeamKind

Although there are three TeamKind fragments
already in the OPF repository (peer programming
team kind, XP-style team kind, and several subtypes
of project team kind), our detailed analysis of XP,
Scrum, and Crystal leads us to identify one further

��0

Some Method Fragments for Agile Software Development

ProducerKind Fragments WorkProductKind Fragments WorkUnitKind Fragments

Generated from TeamKind Generated from DocumentKind Generated from TaskKind

Scrum Iteration plan Design agile code

Generated from RoleKind Product backlog Develop release plan

Agile customer Release plan Explore architectural possibilities

Agile programmer Story card Manage shared artefacts

Coach Team management (3 subtypes) Mediate/monitor the performance of
team’s tasks

Consultant Monitor work products

Product owner Specify team policies

Scrum Master Specify team structure

Tracker Write user stories

XP tester StageKind Fragments

Generated from ToolKind Generated from StageWithDurationKind Generated from TechniqueKind

Groupware (6 subtypes) Iteration/sprint Agile team building

Generated from InstantaneousStageKind Collective ownership

Iteration/sprint completed milestone Conflict resolution

Release completed milestone Continuous integration

Daily meeting

Holistic diversity strategy

Iteration planning game

Methodology-tuning technique

Monitoring by progress and stability

Open workspace

Pair programming

Parallelism and flux

Planning game

Reflection workshop

Role rotation

Round-robin participation technique

Simple design

Small/short releases

Sprint/iteration review meeting

Sprint planning meeting

System metaphor

Team facilitation

Team motivation

Test driven development

Generated from ActivityKind (sub-
type of WorkFlowKind)

Team management

Table 2. List of newly identified method fragments to support agile software development (N.B. There is
no meaning to horizontal alignments).

 ���

Some Method Fragments for Agile Software Development

missing fragment. Scrum has its own definition of
Team, such that we must introduce a new fragment
to represent this—we call is “Scrum Team Kind.”
A full description of this new Scrum Team Kind
fragment is to be found in Appendix A.

RoleKind

The OPF repository contains already a large number
of useful RoleKind fragments: programmer, peer
programmer, customer, tester, project manager/big
boss, several kinds of software engineers, and
stakeholders such as user, manager, vendor repre-
sentative, and of course customer.

Nevertheless, our detailed analysis of these
three agile methods led us to identify eight new
roles pertinent only to one or more of these agile
approaches. These eight new roles are described in
full in Appendix B.

ToolKind

To add to the two existing OPF fragments in this
group, lowerCASE tool kind and upperCASE tool
kind, we propose just one new one for furthering
tool support for agile methods: Groupware Tool-
Kind, which describes the kind of tools that support
and augment group work (Greenberg, 1991). Their
goal is to assist team members in communicating,
collaborating and coordinating their activities
(Ellis, Gibbs, & Rein, 1991). Groupware tools are
particularly important in agile projects, where team
members are required to work closely together and
maintain a cohesive, mutually supportive team
relationship.

Six potential sub-classes of Groupware Tool kind
have been identified from the literature (Saunders,
1997; Terzis & Nixon, 1999) and are summarized
in Appendix C.

This study suggests that future software devel-
opment teams may begin to use Groupware based
on the notions of agency, where the architecture
of the Groupware consists of one or more agents
(Tarumi, & Mizutani et al., 1999). This is still a
subject of research.

Work Product Fragments

Work products can be classified as either documents
or models, that is, instances of DocumentKind or
ModelKind, respectively.

DocumentKind

An extensive list of document kinds has been
documented in Firesmith and Henderson-Sellers
(2002). These include build plans, system require-
ments specifications, user’s annuals, templates,
standards, design-focussed document sets, test
sets, and documents relating to teamwork. To add
to these, for the support of agile methodologies, we
recommend five new document kinds, as described
in Appendix D.

ModelKind

As discussed earlier, an agile project values “work-
ing software” more than documentation. Thus,
except for user requirements that are documented
by story cards, no formal models are required to
capture analysis and design decisions. These deci-
sions can be captured in the code itself. In other
words, the code is the main repository of design
information; formal models and diagrams are only
developed if necessary, for example, to summarize
and highlight important design issues at the end of
the project (Fowler, 2001; Jeffries, 2004).

stage Fragments

The OPF repository (Firesmith & Henderson-Sell-
ers, 2002) already contains four useful StageWith-
DurationKinds (XP lifecycle, Scrum lifecycle,
phase, and release build) and one useful Instanta-
neousStageKind (Code Drop Milestone)—these
readily map to XP and Scrum phases (Table 3). In
the former category, we suggest that agile method-
ologies need one further fragment (Iteration/Sprint
BuildKind) and in the latter category it needs two
(Iteration/Sprint Completed MilestoneKind, and

���

Some Method Fragments for Agile Software Development

ReleaseCompleted MilestoneKind) (for details see
Appendix E).

sUMMAry, cONcLUsIONs,
AND FUrtHEr WOrK

We have argued that a situational method engi-
neering approach can be used in the context of
agile software development. Existing method
bases have been shown to be deficient and in need
of enhancement—in terms of more method frag-
ments—in order to completely support these new
methodologies. Based on a study of several of the
existing agile methods, we have taken the existing
methodbase of the OPEN Process Framework, or
OPF (Firesmith & Henderson-Sellers, 2002), and
proposed additions to it. These additions are a set
of method fragments that uniquely support agile
software development, each of which is created from
the relevant powertype pattern as standardized in
the Australian Standard methodology metamodel
of AS 4651 (Standards Australia, 2004).

AcKNOWLEDGMENt

We wish to thank Dr. Cesar Gonzalez-Perez for
his useful comments on an earlier draft of this
chapter. We also wish to thank the Australian Re-
search Council for funding under Discovery Grant
DP0345114.

rEFErENcEs

Abrahamsson, P., Warsta, J., Siponen, M. T., &
Ronkainen, J. (2003). New directions on agile
methods: a comparative analysis. In Proceedings of
ICSE ’03 (pp. 244-254). Los Alamitos, CA, USA:
IEEE Computer Society Press.

AgileManifesto. (2001). Manifesto for agile softwa-
re development. Retrieved March 14 2005, from
http://www.agilemanifesto.org/

Atkinson, C. (1998). Supporting and applying the
UML conceptual framework. In J. Bézivin & P.-A.
Muller (Eds.), «UML» 1998: Beyond the notation,
(Vol. 1618, pp. 21-36). Berlin, Germany: Springer-
Verlag.

Avison, D. E., & Wood-Harper, A. T. (1991). Infor-
mation systems development research: an explora-
tion of ideas in practice. The Computer Journal,
34(2), 98-112.

Beck, K. (2000). Extreme programming explained:
Embrace change. Boston: Addison-Wesley.

Boehm, B. (2002). Get ready for agile methods,
with care. IEEE Computer, 35(1), 64-69.

Brooks, F. P., Jr. (1987). No silver bullet: essence
and accidents of software engineering. IEEE Com-
puter, 20(4), 10-19.

Cockburn, A., & Highsmith, J. (2001). Agile softwa-
re development: the people factor. IEEE Computer,
34(11), 131-133.

OPEN PhaseKinds XP Phases Scrum

Initiation Exploration
Planning Pregame

Construction Iterations to release Development/Game

Delivery Productionizing Postgame

Usage Maintenance
Death

Retirement

Table 3. Correspondence between OPEN phases and agile methodologies’ phases

 ���

Some Method Fragments for Agile Software Development

Coram, M., & Bohner, S. (2005). The impact of
agile methods on software project management.
In Proceedings of the 12th IEEE International
Conference and Workshops on the Engineering of
Computer-Based Systems (ECBS’05).

Debenham, J., & Henderson-Sellers, B. (2003).
Designing agent-based process systems—extending
the OPEN Process Framework. In V. Plekhanova
(Ed.), Intelligent agent software engineering (pp.
160-190). Hershey, PA, USA: Idea Group Publish-
ing.

Ellis, C. A., Gibbs, S. J., & Rein, G. (1991). Group-
ware: Some issues and experiences. Communica-
tions of the ACM, 34(1), 39-58.

Firesmith, D. G., & Henderson-Sellers, B. (2002).
The OPEN Process Framework. An introduction.
London: Addison-Wesley.

Fitzgerald, B., Russo, N. L., & O’Kane, T. (2003).
Software development method tailoring at Motorola.
Communications of the ACM, 46(4), 65-70.

Fowler, M. (2001). Is design dead? In G. Succhi & M.
Marchesi (Eds.), Extreme programming examined
(pp. 3-7). Boston: Addison-Wesley.

Gonzalez-Perez, C., & Henderson-Sellers, B. (2005).
Templates and resources in software development
methodologies. Journal of Object Technology, 4(4),
173-190.

Greenberg, S. (1991). Computer-supported co-op-
erative work and Groupware. London: Academic
Press Ltd.

Haire, B., Henderson-Sellers, B., & Lowe, D.
(2001). Supporting web development in the OPEN
process: additional tasks. In Proceedings of the
25th Annual International Computer Software and
Applications Conference. COMPSAC 2001 (pp.
383-389). Los Alamitos, CA, USA: IEEE Computer
Society Press.

Henderson-Sellers, B. (2001). An OPEN process for
component-based development. In G.T. Heineman,

& W. Councill (Eds.), Component-based software
engineering: Putting the pieces together (pp. 321-
340). Reading, MA, USA: Addison-Wesley.

Henderson-Sellers, B. (2006, May 30-31). Method
engineering: theory and practice. In D. Karagiannis
& H. C. Mayr (Eds.), Proceedings of the Information
Systems Technology and its Applications. 5th
International Conference ISTA 2006. Klagenfurt,
Austria, (Vol. P-84, pp. 13-23). Bonn: Gesellschaft
für Informatik.

Henderson-Sellers, B., France, R., Georg, G., &
Reddy, R. (2007). A method engineering approach
to developing aspect-oriented modelling processes
based on the OPEN Process Framework. Informa-
tion and Software Technology, 49(7), 761-773

Henderson-Sellers, B., Giorgini, P., & Bresciani,
P. (2004). Enhancing agent OPEN with concepts
used in the tropos methodology. In A. Omicini, P.
Pettra, & J. Pitt (Eds.), Engineering Societies in
the Agents World IV. 4th International Workshop,
ESAW2003 LNAI (Vol. 3071, pp 323-245). Berlin,
Germany: Springer-Verlag.

Henderson-Sellers, B., & Gonzalez-Perez, C.
(2005a). The rationale of powertype-based
metamodelling to underpin software development
methodologies. In S. Hartmann & M. Stumptner
(Eds.), Conferences in Research and Practice in
Information Technology, Sydney, NSW, (Vol. 43, pp.
7-16). Australia: Australian Computer Society.

Henderson-Sellers, B., & Gonzalez-Perez, C.
(2005b). Connecting powertypes and stereotypes.
Journal of Object Technology, 4(7), 83-96.

Henderson-Sellers, B., & Graham, I. M. (1996).
OPEN: toward method convergence? IEEE Com-
puter, 29(4), 86-89.

Henderson-Sellers, B., & Hutchison, J. (2003).
Usage-centered design (UCD) and the OPEN
Process Framework (OPF). In L. L. Constantine
(Ed.), Proceedings of the Performance by Design
USE2003, Second International Conference on Us-

���

Some Method Fragments for Agile Software Development

age-Centered Design (pp. 171-196). Rowley, MA,
USA: Ampersand Press.

Henderson-Sellers, B., & Serour, M. (2000). Creat-
ing a process for transitioning to object technology.
In Proceedings of the Seventh Asia--Pacific Soft-
ware Engineering Conference APSEC 2000 (pp.
436-440). Los Alamitos, CA, USA: IEEE Computer
Society Press.

Henderson-Sellers, B., & Serour, M. K. (2005).
Creating a dual agility method - the value of method
engineering. Journal of Database Management,
16(4), 1-24.

Highsmith, J., & Cockburn, A. (2001). Agile sof-
tware development: the business of innovation.
IEEE Computer, 34(9), 120-127.

Hogan, C. (2003). The rules and practices of extre-
me programming. Retrieved August 5, 2005, from
http://www.everiware.com/cgi-bin/view/Lifecycle/
ExtremeProgramming

Jeffries, R. (2004). Where’s the spec, the big picture,
the design? Retrieved on August 15, 2005, from
http://www.xprogramming.com/xpmag/docBigPic-
tureAndSpec.htm

Kumar, K., & Welke, R.J. (1992). Methodology
engineering: a proposal for situation-specific
methodology construction. In W. W. Cotterman,
& J. A. Senn (Eds.), Challenges and strategies for
research in systems development (pp. 257-269).
Chichester, UK: John Wiley & Sons.

MountainGoatSoftware. (2005). The Scrum deve-
lopment process. Retrieved on August 23, 2005,
from http://www.mountaingoatsoftware.com/
Scrum/index.php

Odell, J. J. (1994). Power types. Journal of Object-
Oriented Programming, 7(2), 8-12.

Odell, J. J. (1995). Introduction to method engineer-
ing. Object Magazine, 5(5).

Pastor, O., Molina, J. C., & Henderson-Sellers, B.
(2005, May 27-June 1). Supporting ONME with

a method engineering framework. Proceedings
of the Software Development. Int. Conf. on
Software Development, SWDC-2005, (pp. 195-208).
Reykjavik, Iceland: University of Iceland Press.

Qumer, A., & Henderson-Sellers, B. (in press). An
evaluation of the degree of agility in six agile meth-
ods and its applicability for method engineering.
Information and Software Technology.

Saeki, M., Iguchi, K., Wen-yin, K., & Shinohara,
M. (1993). A meta-model for representing software
specification & design methods. In Proceedings of
the IFIP WG8.1 Conference on Information Systems
Development Process, Come (pp. 149-166).

Saunders, J. H. (1997). A manager‘s guide to com-
puter supported collaborative work (also known as
Groupware). Retrieved July 1, 2005, from http://
www.johnsaunders.com/papers/cscw.htm

Schwaber, K. (1995). SCRUM development process.
In Proceedings of the OOPSLA’95 Workshop on
Business Object Design and Implementation.

Schwaber, K., & Beedle, M. (2002). Agile softwa-
re development with Scrum. New Jersey, USA:
Springer-Verlag.

Serour, M., Henderson-Sellers, B., Hughes, J.,
Winder, D., & Chow, L. (2002). Organizational
transition to object technology: theory and practice.
In Z. Bellahsène, D. Patel, & C. Rolland (Eds.),
Object-oriented information systems, LNCS 2425
(pp. 229-241). Berlin, Germany: Springer-Verlag.

Standards Australia. (2004). Standard metamodel
for software development methodologies (AS
4651-2004). Sydney, NSW, Australia: Standards
Australia. Purchasable online at http://www.sai-
global.com

Tarumi, H., Mizutani, S., et al. (1999). Simulation
of agent-based Groupware with human factors. In
Proceedings of the 1999 International Symposium
on Database Applications in non-traditional envi-
ronments, Kyoto, Japan.

 ���

Some Method Fragments for Agile Software Development

Terzis, S., & Nixon, P. (1999). Building the next
generation Groupware: A survey of Groupware
and its impact on the virtual enterpris (Technical
Report TCD-CS-1999-08). Dublin, Ireland: Trinity
College, Computer Science Department.

Tran, Q. N. N., Henderson-Sellers, B., & Hawrysz-
kiewycz, I. (2007). Agile method fragments and
construction validation. In M. Syed (Ed.), Handbook
of research on modern systems analysis and design
technologies. Hershey, PA, USA: IGI.

Turk, D., France, R., & Rumpe, B. (2005). As-
sumptions underlying agile software-development
processes. Journal of Database Management,
16(4), 62-87.

van Deursen, A. (2001). Customer involvement in
extreme programming: XP2001 workshop report.
ACM SIGSOFT Software Engineering Notes, 26(6),
70-73.

Wake, W. C. (2001). Extreme programming explo-
red. Boston: Addison Wesley.

APPENDIx A. tEAM KINDs

scrum team Kind

This is a subclass of “Project Team Kind,” which
follows particular Scrum practices during the system
development process. A Scrum team is different
from an “XP-Style Team” in that its members can
be cross-functional, including people with all of the
skills necessary, for example, analysts, designers,
quality control, and programmers (instead of only
programmers as in an “XP-Style Team”).

A Scrum team is characterized by its full au-
thority to make any decisions and to do whatever is
necessary to produce a product increment each sprint
and to resolve problems/issues, being constrained
only by organizational standards and conventions.
The Scrum team should also self-organize to draw
on its strengths and to allow everyone to contribute

to the outcome. This need for self-organization
implies that there should be no titles or job descrip-
tions within a Scrum team. Each member applies
his/her expertise to all of the problems. Scrum avoids
people who refuse to code on the grounds that they
are systems architects or designers.

APPENDIx b. rOLE KINDs

Agile customer role Kind

“Agile Customer RoleKind” is a subclass of “Cus-
tomer RoleKind.” Being a customer in an agile
project requires many more responsibilities than
a customer in a traditional development project.
Traditional customers may only be involved at
the inception of the project (e.g., helping to define
requirements and contractual obligations) and at
the end of the project (e.g., performing alpha, beta,
and acceptance testing) (Coram & Bohner, 2005).
In contrast, customers in agile projects are involved
in the development process much more frequently
and with more influence. In XP, at least one cus-
tomer must be part of the project team and actively
participate in the development process. Agile devel-
opment style works best when customers operate
in dedicated mode with the development team and
when their tacit knowledge is sufficient for the full
span of the application (Boehm, 2002). Note that
merely having a customer representative available
in the team is not sufficient. They must be commit-
ted, knowledgeable, collaborative, representative,
and empowered (van Deursen, 2001; Boehm, 2002).
An agile customer is required to be responsible for
(and empowered to do) the following:

• Writing “stories” or listing “backlog items”
to describe to developers the requirements of
end users

• Making decisions in release planning and
iteration planning (namely what requirements
should be implemented in which release and
which iteration, desired release date). This

���

Some Method Fragments for Agile Software Development

involves making decisions on prioritizing and
trading off the requirements

• Providing inputs (mainly opinions and deci-
sions) into design and prototyping sessions

• Reviewing and accepting delivered releases
• Writing, organizing, and running functional

tests on the delivered system. The customer
will need to work closely with other project
team members to learn what kind of things
is helpful to test and what kind of tests are
redundant

• Handling user training.

The best agile customers are those who will
actually use the system being developed, but who
also have a certain perspective on the problem to
be solved (Beck, 2000).

Agile Programmer role Kind

“Agile Programmer Role Kind” is a subclass of “Peer
Programmer Role Kind.” An agile programmer is
responsible for not only the basic responsibilities of
writing, unit testing, and debugging source code,
but also responsible for:

• Analyzing user requirement
• Estimating how much effort and time are

needed to satisfy each user requirement,
thereafter letting the customer know about
this estimate in order for them to make the
decision on what to include in each release

• Designing the software solution
• Refactoring source code to keep the code as

simple and definitive as possible
• Writing and running tests to demonstrate some

vital aspect of the software
• Integrating new code to base-lined code and

make sure the integrated product passes all
Regression Tests

• Communicating and coordinating with other
programmers and team members. If the pro-
grams run, but there is some vital component
of communication left to be done, the job of
the agile programmer is not yet over.

coach role Kind

A coach is responsible for the development process
of the XP team as a whole. However, a “coach” is not
to be equated with a team leader. While team leaders
are often isolated geniuses making the important
decisions on the project, the measure of a coach is
how few technical decision he makes. A coach’s
job is to get everyone else in the team making good
decisions. Responsibilities of a coach are:

• Understanding the practices and values of XP
deeply, so as to guide other team members in
following the XP approach (e.g., what alterna-
tive XP techniques might help the current set
of problems, how other teams are using XP,
what the ideas behind XP are, and how they
relate to the current situation)

• Noticing when people are deviating from the
team’s process (e.g., programmers are skipping
unit tests) and bringing this to the individuals’
or team’s attention

• Seeing long-term refactoring goals and en-
couraging small-scale refactorings to address
parts of these goals

• Helping programmers with individual tech-
nical skills, such as testing, formatting, and
refactoring

• Explaining the process to upper-level manag-
ers.

The role of coach usually diminishes as the
team matures.

consultant role Kind

A consultant is not a part of an XP team. Rather,
he/she is an external specialist whom the team
seeks for technical help. Normally, an XP team
does not need to consult a specialist, but from time
to time the team needs deep technical knowledge.
The responsibility of a consultant is to teach XP
team members how to solve a particular problem
that the team needs to solve. The consultant must

 ���

Some Method Fragments for Agile Software Development

not solve the problem by themselves. Instead, one
or two team members will sit with the consultant
while he/she solves the problem.

Product Owner role Kind

A Product owner is responsible for managing and
controlling the “Product Backlog” in Scrum (see
DocumentKind section). Their specific responsi-
bilities are:

• Creating the product backlog together with the
“Scrum Master” and project team members

• Maintaining and sustaining the content and
priority of the product backlog, including add-
ing, removing and updating product backlog
items and their priority during releases and
iterations/sprints. Note that the product owner
solely controls the product backlog. Any mem-
ber wanting to update/add/remove an item or
its priority has to convince the product owner
to make the change. Without a single product
owner, floundering, contention and conflicts
surrounding the product backlog result

• Turning ‘issues’ in product backlog into spe-
cific features or technology to be developed
(i.e., workable items)

• Ensuring the product backlog is visible to
everyone

• Segmenting and allocating product backlog
items into probable releases, thereby devel-
oping the “Release Backlog Document” (see
DocumentKind section)

• Working with project team members to esti-
mating the amount of work in days to imple-
ment each product backlog item for “Product
Backlog Document” and “Release Backlog
Document” (see DocumentKind section)

• Revising the “Release Backlog Document”
as the project team builds the product during
each iteration/sprint (e.g., revising the release
date or release functionality).

• Making final decisions on the tasks related
to product backlog items, thereby developing
“Sprint Backlog Document”

• Reviewing the system with other stakeholders
at the end of iteration/sprint.

In a Scrum project, a product owner is chosen
by the “Scrum Master,” customers, and manage-
ment.

scrum Master role Kind

Scrum introduces the role of “Scrum Master,”
which is essentially a sub-class of both “Coach Role
Kind” and “Project Manager/big Boss Role Kind”
in XP. A Scrum Master is a coach in that he/she is
responsible for guiding the project team members
in following the Scrum practices and values, for
keeping track of the progress and ensuring everyone
is on track, and providing assistance to members
that need help (as well as for other responsibilities
of a coach; see Coach Role Kind section). A Scrum
Master is also a project manager in that he/she
works with management to form the project team,
represents the team and management to each other,
and makes decisions. An important responsibility
of a Scrum Master (which is not specified for a
coach or a project manager) is to ensure that any
impediments to the project are promptly removed
and changed in the process, so as to keep the team
working as productively as possible (Schwaber &
Beedle, 2002). The Scrum Master can either person-
ally remove them, or cause them to be removed as
soon as possible. When the Scrum Master does the
latter, he or she needs to make visible to the team
a particular procedure, structure or facility that is
hurting productivity. Another responsibility is to
conduct the “Daily Scrum Meeting” and “Sprint/
Iteration Review Meeting” (see TechniqueKind
section in Tran et al., 2007).

tracker role Kind

The role kind “tracker” is introduced based on an
XP tracker. A tracker is responsible for giving feed-
back to other members of an XP team. In particular,
he/she handles the following responsibilities:

���

Some Method Fragments for Agile Software Development

• Tracing the estimates made by the team
(in release planning and iterative planning)
and giving feedback on how accurate these
estimates turn out, in order for the team to
improve future estimations.

• Tracing the progress of each iteration and
evaluating whether the team is able to achieve
the desired goal if they follow the current
course or if they need to change something.
A couple of iterations into a release, a tracker
should be able to tell the team whether they
are going to make the next release without
making big changes.

• Keeping a log of functional test scores,
reported defects, who accepts respon-
sibility for each of them, and what test
cases were added on each defect’s behalf.

xP tester role Kind

In an XP team, a lot of testing responsibilities actu-
ally lie with the “Agile Programmer Role Kind” (i.e.,
unit testing) and “Agile Customer Role Kind” (i.e.,
acceptance/functional testing). Thus, the responsi-
bility of a tester role is really to help the customer
write and execute functional tests. Accordingly, we
introduce an “XP Tester Role Kind” as a subclass of
“Tester Role Kind” who is responsible for helping
the customer write and execute functional tests.
An XP tester is also responsible for making sure
the functional tests are run regularly and the test
results are broadcasted in a prominent place.

APPENDIx c. sIx sUbtyPEs OF
GrOUPWArE tOOLKIND

conferencing tool Kind

• Text-based conferencing: IRC, COW (confer-
encing on the Web)

• Audio/video conferencing: CUSeeMe, Sun
Show Me, Intel TeamStation, PictureTel

Electronic Mail tool Kind

• E-mail systems that support message-based
collaboration and coordination: Lotus Notes,
Novel Groupwise, and MS Exchange (these
offer support for calendaring & scheduling,
discussion groups, & notetaking)

• Newgroups systems: USENETS and Grou-
pLens

Group Decision support tool Kind

• Support for group-agenda setting, brainstorm-
ing, filtering, classifying, or prioritizing the
issues at hand: GroupSystems, MS NetMeet-
ing, Meeting Room, TeamEC, ICBWorks

Meeting support tool Kind

• Support for audio-video conferencing and
application-data sharing: MS NetMeeting,
NewStar Sound IDEAS, and GroCo

• Support for the preparation and management
of team meetings: DOLPHIN

shared Workspace tool Kind

• Sharedspaces, GMD FIT BSCW (basic sup-
port for cooperative work), Collaborative
Virtual Workspace

• Room-based systems: TeamRooms, Mush-
room

• Virtual environments: Virtual Society
• Support for group coordination: Lotus Notes,

IBM FlowMark, JetForm, Action Workflow

Workflow Tool Kind

• Support for group coordination: Lotus Notes,
IBM FlowMark, JetForm, Action Workflow

 ���

Some Method Fragments for Agile Software Development

APPENDIx D. DOcUMENtKINDs

Iteration Plan Document Kind

• Purpose: A subclass of “Build Plan Docu-
ment Kind,” which documents the plan for a
particular iteration/sprint within a release.

• Description: An “Iteration Plan Document
Kind” specifies the requirements to be imple-
mented in the forthcoming iteration/sprint, the
tasks to be performed during the iteration/
sprint to implement these requirements, and
the time estimates to complete each task.

In XP, the requirements included in “Iteration
Plan Document Kind” are ‘user stories’ selected
from “Release Plan Document.” The iteration plan
is to be generated by XP programmers. These pro-
grammers also need to sign up for individual tasks
and this information should also be recorded in the
“Iteration Plan Document Kind” (Wake, 2001).

In Scrum, the “Iteration Plan Document Kind” is
referred to as “Sprint Backlog Document.” Require-
ments listed in it are backlog items selected from
“Release Backlog Document” (Schwaber & Beedle,
2002). Once a task is started, its time estimate is
to be updated daily (by the developer working on
the task) to show the remaining hours needed to
complete that work. Sprint backlogs are produced
by the developers, “Scrum Master” and “Product
Owner” (see RoleKind section).

Product backlog Document Kind

• Purpose: A subclass of “System Requirements
Specification Document Kind” generated and
used in Scrum projects. Product backlog docu-
ments can be produced by multiple stakehold-
ers, including customers, users, project team,
marketing, sales division, customer support,
and management.

• Content: A product backlog contains a master
list of all requirements that can be foreseen
for a system product. Product backlog items

can include, for example, features, functions,
bug fixes, defects, requested enhancements,
technology upgrades, and issues requiring
solution before other backlog items can be
done (Schwaber & Beedle, 2002). These items
can be technical (e.g., “refactor the login class
to throw an exception”) or more user-centric
(e.g., “allow undo on the setup screen”). It is
possible to express each Scrum backlog item
in the form of XP’s user story (see “Story Card
Document Kind”) (MountainGoatSoftware,
2005).

The list of product backlog items should be
prioritized by the “Product Owner” (see RoleKind
section). Items that have high priority are the ones
that are the most desired. The effort needed for each
item’s implementation should also be estimated by
the “Product Owner”. The Product backlog is to
be constantly expanded or updated with new and
more detailed items, new priority order and more
accurate estimations, as more is learned about the
product and its customers (particularly throughout
sprints and releases).

release Plan Document Kind

• Purpose: A subclass of “Build Plan Document
Kind,” which documents the overall plan for
a particular release.

• Description: A “Release Plan Document
kind” specifies which requirements are going
to be implemented by a particular release, the
prioritization of these stories and the estimated
date of the release (Wake, 2001; Hogan, 2003).
A release plan will be used to create iteration
plans (see “Iteration Plan Document Kind”).

In XP, the requirements listed in the release
plan are user stories selected from “story card
documents.” The release plan is to be developed
by both development and business actors. A release
plan used to be called “commitment schedule” in
XP. The name was changed to more accurately

��0

Some Method Fragments for Agile Software Development

describe its purpose and be more consistent with
“iteration plan” (Hogan, 2003).

In Scrum, the “Release Plan Document” is
referred to as a “Release Backlog Document.” It
is to be developed by the “Product Owner” (see
RoleKind section).

story card Document Kind

• Purpose: A subclass of “System Require-
ments Specification Document Kind” which
is generated and used in XP projects. Story
card documents are typically produced by
customers in XP teams.

• Content: Each story card captures a “user
story” describing a feature that the customer
wants the system to provide. Each story is ac-
companied with a name and a short paragraph
documenting the purpose of the story.

team Management Document Kinds:

a. Team Structure Document Kind

• Purpose: This document kind is equivalent
to the organization chart document kind, but
at the team level.

• Content: This document kind should contain
the specification of the structure of a particular
team in terms of:
◦ Roles (or individuals) that make up the

team
◦ Acquaintance relationships amongst

these roles
◦ Authority relationships that govern these

acquaintances

The team structure document kind can be devel-
oped and updated by team leaders and distributed
to newly joined team members.

b. Team Policies Document Kind

• Purpose: Specify team policies (or rules or
conventions).

• Content: When working in teams, developers
usually have to comply with certain policies
(or rules or conventions) that govern the
collaborative work within the team. These
policies should be identified and documented.
Example policies: each team member can only
play one role at a time within the team; every
team member must report to team leader;
interactions/communications amongst team
members are mediated by team leader.

The team structure document kind can be devel-
oped and updated by team leaders and distributed
to team members.

c. Artefact Access Permissions
Document Kind

• Purpose: Specify access permissions of par-
ticular artefact(s).

• Content: Different roles in a team, or different
teams, may have different permissions to ac-
cess the same artefact (for example, a team’s
message board can be read and updated by a
team leader, but only read by team members).
In such cases, the artefact should be accom-
panied by an “artefact access permission
document,” which specifies the permissions
granted to each different role/team.

The artefact access permissions document kind
can be produced and kept by the artefact manager
role or team leader role (depending on which role is
responsible for managing the artefact) and distrib-
uted to team members (probably only the permis-
sions that the member is concerned).

APPENDIx E. bUILD KINDs

Iteration/sprint build Kind

An “Iteration/Sprint Build”1 is a period of time
from one to 4 weeks within a “Release Build” dur-

 ���

Some Method Fragments for Agile Software Development

ing which a new set of features/requirements are
implemented and added to a release. Each “Release
Build” should be broken into several “Iteration/
Sprint Builds.”

At the beginning of an iteration/sprint, “Develop
Iteration Plan Task”2 is performed to determine
what features/requirements are to be implemented
in that iteration/sprint. During the iteration/sprint,
the project team designs, codes, and tests for the
selected features/requirements. At the end of the
iteration/sprint, various “Testing Tasks”3 are carried
out to see if the software produced by the iteration/
sprint satisfies the desired requirements.

In Scrum projects, each sprint also involves
“Iteration Review” and “Iteration Adjust” tasks4
which identify any risks/issues affecting the it-
eration/sprint and adjust the iteration/sprint or the
overall requirements (or even development direc-
tion) to reconcile these risks/issues.

Iteration/sprint completed
Milestone Kind

This milestone marks the event when an iteration/
sprint is completed. Ideally at each “Iteration Com-
pleted Milestone,” the customer will have completed
the functional tests on the resulting code and these
tests should all pass. In XP, “Iteration Completed
Milestones” occur during the XP “Iteration to
First Release” phase, “Productionizing” phase,
and “Maintenance” phase. The first ever iteration
should put the overall system’s architecture in place.
In Scrum, “Sprint Completed Milestones” occur
during Scrum’s “Game” phase.

release completed Milestone Kind

This milestone marks the event when a release of
the system is delivered to the customer. In Scrum,
the whole Scrum’s cycle (including “Pregame,”
“Game,” and “Postgame” phases) works towards
a particular release. Thus, the “Release Completed
Milestone” occurs at the end of the cycle, or more
specifically, the end of the “Postgame” phase. In

XP, however, the first release is produced at the end
of the “Productionizing” phase, while subsequent
releases are delivered during the “Maintenance”
phase. This gives rise to two subtypes of “Release
Completed Milestone Kind”:

• “First Release Completed Milestone Kind”
• “Subsequent Release Completed Milestone

Kind”

KEy tErMs

Agile Method: A method that is people focused,
flexible, speedy, lean, responsive, and supports
learning (based on Qumer & Henderson-Sellers,
2007).

Agility: Agility is a persistent behaviour or
ability of a sensitive entity that exhibits flex-
ibility to accommodate expected or unexpected
changes rapidly, follows the shortest time span,
uses economical, simple and quality instruments
in a dynamic environment and applies updated
prior knowledge and experience to learn from the
internal and external environment (Qumer and
Henderson-Sellers, 2007).

Metamodel: A model of models.

Method Engineering: The engineering dis-
cipline to design, construct, and adapt methods,
techniques, and tools for systems development.

Method Fragment: Construction of a software
development method for a specific situation.

Producer: An agent that executes work units.

ProducerKind: A specific kind of producer,
characterized by its area of expertise.

Stage: A managed time frame within a proj-
ect.

StageKind: A specific kind of stage, character-
ized by the abstraction level at which it works on the
project and the result that it aims to produce.

���

Some Method Fragments for Agile Software Development

Task: A small-grained work unit that focuses
on what must be done in order to achieve a given
purpose.

TaskKind: A specific kind of task, character-
ized by its purpose within the project.

Technique: A small-grained work unit
that focuses on how the given purpose may be
achieved.

TechniqueKind: A specific kind of technique,
characterized by its purpose within the project

WorkProduct: An artefact of interest for the
project.

WorkProductKind: A specific kind of work
product, characterized by the nature of its contents
and the intention behind its usage.

WorkUnit: A job performed within a project.

WorkUnitKind: A specific kind of work unit,
characterized by its purpose within the project.

ENDNOtEs

1 XP uses the term “iteration” while Scrum uses
“sprint.”

2 See TaskKind section in Tran et al. (2007)
3 See TaskKind section in Tran et al. (2007)
4 See TaskKind section in Tran et al. (2007)

