ABSTRACT

The prosperous development of wireless communication and sensor technologies has attracted the attention of researchers from both computer and education fields. Various investigations have been made for applying the new technologies to education purposes, such that more active and adaptive learning activities can be conducted in the real world. Nowadays, ubiquitous learning (u-learning) has become a popular trend of education all over the world, and hence it is worth reviewing the potential issues concerning the use of u-computing technologies in education, which could be helpful to the researchers who are interested in the investigation of mobile and ubiquitous learning.

UBIQUITOUS LEARNING: THE NEW AGE FOR EDUCATION

In recent years, digitalization around the globe has been proceeding toward wireless communication and sensor technologies, which are able to detect the contexts of our daily lives, and provide personal supports accordingly. Such technology has been called ubiquitous computing (u-computing). The innovation and advance of those new technologies have led to a new research issue in education; that is, to develop an innovative
learning environment so that the students can learn in any place at any time. Moreover, with the help of context-aware (sensor) technology, the learning system is able to detect the student learning behaviors in the real world, and hence more active and adaptive learning activities can be conducted. Such a learning scenario is called context-aware ubiquitous learning (context-aware u-learning), which has gradually become a popular trend of education.

Researchers have demonstrated how a context-aware u-learning environment can be used to help the learners in increasing their ability for solving problems in the real world. For example, a group of researchers in Japan has employed u-computing technologies to conduct students to learn Japanese under real-world situations. The systems can provide learners with appropriate expressions according to different contexts (e.g., occasions or locations) via mobile devices (e.g., PDA, Personal Digital Assistant).

Ubiquitous Computing Technologies that Facilitate Education

U-computing technologies can be used to provide personalized services in the context-aware u-learning environment. For instance, when a student enters a lab or stands in front of an instrument, the context-aware devices are able to detect the location of the student and transfer the information to the server. Based on the decision of tutoring program in the server, relevant information, such as the operating procedure for each device, the need-to-know rules for working in the lab and emergency handling procedures, will be timely displayed to the student based on the personal and environmental contexts. Some ubiquitous computing technologies that might be useful in educational applications are given as follows:

- **Sensors for Detecting Personal Contexts**

 Researchers have proposed several significant characteristics of u-learning, which make it different from conventional e-learning, including seamless services, context-aware services, and adaptive services. In an ideal context-aware u-learning environment, the computing, communication and sensor equipment will be embedded and integrated into the articles for daily use. In addition, researchers also indicated that “time” and “location” might be the most important parameters for describing a learner’s context.

 There are several ways to detect the timely location of a learner. GPS (Global Positioning System) is one of the popular technologies for continuously detecting an object’s position by satellites, which trace air waves shot from the IC chips embedded in the objects. The object’s location is described with longitude, latitude and elevation. Other sensors, such as RFID (Radio Frequency Identification), which is an automatic identification method relying on storing and remotely retrieving data using devices called RFID tags or transponders, can also be used to detect the location of a learner by reading the messages from the tags, and then calculating the learner’s position based on the intensity of the signals.

- **Advanced Technologies for Detecting Personal Contexts**

 Learners might feel distressed or confused while encountering problems in the u-learning environment. Under such circumstances, a u-learning system could actively provide timely hints or assistance if the contexts concerning human emotions or attitudes can be sensed. Recent studies have depicted the possibilities for detecting such advanced personal contexts. Sensing devices with affective aware ability can not only capture the expressions of human faces, but also tell apart their emotional conditions. For
Ubiquitous Computing Technologies in Education

example, the Affective Computing Group in MIT Media Lab of America have presented significant progress in this field, which can be used to create more friendly interaction between human and computer by the detection of affective computing. Other studies concerning facial expression detection also demonstrated the ability of computers in recognizing emotional conditions of people via various sensors and algorithms.

Human voice is another context for describing the learner’s status, which might be affected by personal emotion, health condition, or surrounding noise. It is suggested that voice cognition could be used to work with facial expression and be physiological aware, to more precisely realized the status of the learner.

Another advanced technology concerning personal context detection is the development of wearable computers, which can derive information from human actions as well as psychological/physiological conditions. Interactions between human and environment could produce physiological changes directly or indirectly, including human body temperature, pulse, blood pressure and heartbeat, which can be automatically detected by those wearable sensors or context-aware clothes for further analysis and explanation of the learner’s behaviors.

- Technologies for Detecting Timely Environmental Contexts

Context awareness is an important feature in a u-learning environment. The learning system can detect the contextual changes around learners, and gather related parameters via various kinds of sensors to provide students with adaptive learning resources and assistance actively or passively.

Temperature is an important environmental context for many applications, such as plant cultivation, physics and chemistry experiments. In the industries of precision instruments, such as semiconductor productions, it is very important to control the temperature in the laboratory. Making humidity stable is also an important factor, because some electrical instruments are easily oxidized in the humid environment. On the other hand, electrical instruments are easily affected and out of order by static electricity in the dry environment.

In addition, for some labs with special purposes (e.g., precise instruments, biotechnology and medical science), it is necessary to detect the volume of particles in the air. Taking semiconductor as an example, these particles may cause instruments a short circuit and even disable the devices.

RESEARCH ISSUES AND TARGET SUBJECTS

In Taiwan, the Conference on Mobile and Ubiquitous Learning was initiated in 2006 (which is called Ubilearn’2006). Based on the issues discussed in Ubilearn’2006 and Ubilearn’2007, several potential issues have been taken into account:

1. Architectures and infrastructures for ubiquitous learning systems
2. Adaptive and adaptable learning environments using mobile and ubiquitous devices
3. Agent support for mobile and ubiquitous learning
4. Architectures and implementations of context-aware learning technology systems
5. Designs for wireless, mobile and ubiquitous technologies in education
6. Design of learner-supportive interfaces of ubiquitous learning applications
7. Evaluation and evaluation methodologies for ubiquitous learning
8. Entertainment computing for ubiquitous learning
Ubiquitous Computing Technologies in Education

9. Mobile and ubiquitous computing support for collaborative learning
10. New pedagogical theories for ubiquitous learning environments and society
11. Innovative and practical use of wireless, mobile and ubiquitous technologies for education, learning and training
12. Psychological or theoretical foundations for mobile and ubiquitous learning and training

Moreover, a special interest group on Mobile and Ubiquitous Learning Environment (MULE) was established in 2007. Based on the previous experiences from these researchers, some potential applications of context-aware ubiquitous learning have been given, including art courses (painting or drawing from life or nature), physical education courses (motor skill training), language courses (conversation training), natural science courses (plant and animal classification) and engineering courses (equipment operating and work flow training).

Nowadays, u-learning is gradually becoming an important learning style owing to the popularity of sensor and wireless network technologies. As long as we strive toward the aim and develop a feasible and effective learning model, the ideal learning environment will become reality. In this innovative learning environment, the system can more actively provide more adaptive assistance to the student based on their learning behaviors in the real world, which have revealed the coming of a new educational age.

This work was previously published in International Journal of Distance Education Technologies, Vol. 5, Issue 4, edited by S. Chang and T. Shih, pp. 1-4, copyright 2007 by IGI Publishing (an imprint of IGI Global).