UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA SUR
ÁREA DE CONOCIMIENTOS DE CIENCIAS DEL MAR
DEPARTAMENTO ACADÉMICO DE BIOLOGÍA MARINA

TESIS

IDENTIFICACIÓN Y ACTIVIDAD ANTIBACTERIANA DE BACTERIAS CULTIVABLES ASOCIADAS A LA ESPONJA Mycale sp. DE LA BAHÍA DE LA PAZ, B.C.S., MÉXICO.

QUE COMO REQUISITO PARA OBTENER EL TÍTULO DE:

BIÓLOGO MARINO

PRESENTA:

YESSICA PARERA VALADEZ

DIRECTOR:

DRA. CLAUDIA JUDITH HERNÁNDEZ GUERRERO

LA PAZ, BAJA CALIFORNIA SUR, OCTUBRE DE 2012
La presente tesis titulada “IDENTIFICACIÓN Y ACTIVIDAD ANTIBACTERIANA DE BACTERIAS CULTIVABLES ASOCIADAS A LA ESPONJA Mycale sp. DE LA BAHÍA DE LA PAZ, B.C.S., MÉXICO.” se realizó en el Centro Interdisciplinario de Ciencias Marinas (CICIMAR-IPN) bajo la dirección de la Dra. Claudia Judith Hernández Guerrero, dentro de los proyectos “Búsqueda de actividad antimicrobiana en bacterias heterótrofas asociadas a la esponja Haliclona sp. de la Bahía de la Paz, B.C.S., México” SIP 20111046 e “Identificación molecular y actividad antibacteriana de bacterias heterótrofas aisladas de la esponja Mycale sp.” SIP 20121262.
DEDICATORIA

A mis padres
Ing. Enrique Parera Guasco y Aurora Valadez,
gracias por su apoyo incondicional e infinita confianza,
gracias por amarme tanto!

A José Rodrigo Torres Bermúdez,
gracias por formar parte de mi vida.

A mis queridas “machorritas”,
por estar siempre para mí, por ser entusiastas y por siempre
tener una sonrisa para regalarme.

A familiares y amigos, en fin... a todos los que siempre han
creído en mí.
AGRADECIMIENTOS

Al Centro Interdisciplinario en Ciencias Marinas (CICIMAR-IPN) por permitirme el uso de las instalaciones y material utilizado en la realización de este trabajo.

Un agradecimiento especial a mi directora Dra. Claudia Judith Hernández Guerrero, por ser tan paciente, por ayudarme en todo momento y por su apoyo en la realización de este proyecto.

A mis asesores Dra. Bárbara González Acosta y Dr. Carlos Sánchez Ortiz por las aportaciones realizadas a este trabajo y sus sabios consejos.

A la Hermandad de los Productos Naturales: M. en C. Ruth Noemí Aguila, Francisco Vargas, Ismael Ortiz, Cynthia Montes, Sonia Valencia, Dra. Karla León y Erika Presa por su ayuda en todo momento, comentarios, apoyo moral y las tardes de Wii.
ÍNDICE
RELACIÓN DE FIGURAS .. I
RELACIÓN DE TABLAS .. II
GLOSARIO ... III
ABREVIATURAS ... VI
RESUMEN ... VII
INTRODUCCIÓN ... 1
ANTECEDENTES ... 3
JUSTIFICACIÓN ... 10
IDENTIFICACIÓN Y DELIMITACIÓN DEL PROBLEMA ... 11
OBJETIVO GENERAL ... 11
OBJETIVOS PARTICULARES .. 12
MATERIAL Y MÉTODOS .. 12
Área de estudio .. 12
Recolección de muestras ... 13
Identificación taxonómica de *Mycale* sp. .. 14
Trabajo en Laboratorio ... 16
Aislamiento de ADN ... 17
Amplificación de ADN mediante PCR. ... 18
Secuenciación y análisis genético ... 19
Ensayo de actividad antibacteriana ... 20
RESULTADOS ... 22

Aislamiento de bacterias cultivables asociadas a Mycale sp. 22
Identificación molecular de las bacterias cultivables asociadas a la esponja
Mycale sp. ... 24
Actividad antibacteriana frente a cepas de bacterias patógenas 30

DISCUSION ... 32

Aislamiento de bacterias cultivables asociadas a Mycale sp. 32
Identificación molecular de las bacterias cultivables asociadas a la esponja
Mycale sp. .. 35
Actividad antibacteriana frente a cepas de bacterias patógenas 40

CONCLUSIONES ... 45

BIBLIOGRÁFÍA .. 47

ANEXO I Secuencias parciales del ADNr 16S ... 64
RELACIÓN DE FIGURAS

Figura 1. Ubicación del área de estudio. Tomado de Vázquez *et al.*, 2011........ 13

Figura 2. *Mycale* sp. Fotografía: Carlos Sánchez...15

Figura 3. Número de cepas Gram positivas y Gram negativas morfológicamente diferentes aisladas a partir de la esponja *Mycale* sp. .. 22

Figura 4. Productos de PCR correspondiente al ADNr 16S de las bacterias aisladas de la esponja *Mycale* sp. ... 24

Figura 5. Porcentaje de bacterias correspondientes a los diferentes Fila. 26

Figura 6. Representación porcentual de los diferentes géneros de bacterias aisladas de la esponja *Mycale* sp. ... 28

Figura 7. Especies de bacterias aisladas de la esponja *Mycale* sp. 28

Figura 8. Árbol bayesiano obtenido a partir de la secuencias parciales del ADNr 16S de cepas cultivables asociadas a *Mycale* sp. 29

Figura 9. Ejemplos de halos de inhibición de las bacterias asociadas a la esponja *Mycale* sp. frente a las cepas *S. aureus* (a y b), *E. coli* (c) y *V. carcharie* (d). .. 31
RELACIÓN DE TABLAS

Tabla I. Morfología colonial y microscópica de las bacterias cultivables aisladas de la esponja *Mycale* sp. .. 23

Tabla II. Comparación de las bacterias asociadas a la esponja *Mycale* sp. con secuencias reportadas en el NCBI. .. 25

Tabla III. Condensado sobre la posición taxonómica de cada una de las secuencias de las cepas aisladas de la esponja *Mycale* sp. 26

Tabla IV. Cepas con actividad antimicrobiana positiva aisladas de la esponja *Mycale* sp. Valores promedio (mm) del halo de inhibición ± desviación estándar.. 31
GLOSARIO

Actividad biológica: o bioactividad, es el efecto benéfico o adverso de una sustancia sobre un organismo vivo.

Alineamiento de secuencias: es un procedimiento bioinformático que sirve para representar y comparar dos o más secuencias o cadenas de ADN, ARN o proteínas, para resaltar su zona de similitud, que podrían indicar relaciones funcionales o evolutivas entre los genes o proteínas consultados.

Antibacteriano: fármaco o sustancia capaz de inhibir el crecimiento y desarrollo de bacterias o su eliminación sin dañar al organismo infectado.

Cadenas de Markov Monte Carlo: método numérico que permite aproximar la probabilidad posterior de un árbol (o de cualquier otra hipótesis compleja) basándose en el muestreo de una distribución simulada en lugar de calcular dicha distribución mediante integración.

Cepa: en microbiología, conjunto de virus, bacterias u hongos que poseen la misma composición genética.

Crateriforme: con forma de cráter.

Diluciones decimales o seriadas: procedimiento para la determinación de células viables usando diluciones seriadas de la muestra y el método de extensión en placa, esto es, colocando un volumen definido de la
dilución que se extiende sobre la superficie de una placa con medio de cultivo sólido.

Electroforesis: técnica para la separación de moléculas según su movilidad en un campo eléctrico. Dependiendo de la técnica, la separación obedece en distinta medida a la carga eléctrica de las moléculas y a su masa.

Gram positiva (+): tipo de célula procariótica cuya pared celular está compuesta básicamente por peptidoglicano y que carece de membrana externa.

Gram negativa (-): un tipo de célula procariótica cuya pared celular contiene relativamente poco peptidoglicano y presenta una membrana externa compuesta por lipopolisacárido, lipoproteína y otras macromoléculas complejas.

Inferencia bayesiana: se basa la interrelación cuantitativa entre la función de verosimilitud y las distribuciones anteriores y posteriores de probabilidad.

Mesohilo: matriz gelatinosa compuesta por fibras de soporte, espículas del esqueleto y una variedad de células ameboides que cumplen funciones vitales del organismo.

Metabolito secundario: compuesto orgánico sintetizado por el organismo que no tiene un rol directo en el crecimiento o reproducción del mismo, pero que pueden brindar ventaja competitiva.

Pulvinado: con forma de cojín o almohada.
Secuenciación: conjunto de métodos y técnicas bioquímicas para determinar el orden de los nucleótidos (A, C, G y T) en un oligonucleótido de ADN.

Siembra en estría: Método de siembra utilizado en microbiología que permite obtener colonias aisladas.

SYBR Gold: un colorante de cianina que se utiliza para la tinción fluorescente de los ácidos nucleóticos con una gran sensibilidad.

Tinción de Gram: procedimiento de tinción diferencial empleado para la visualización de bacterias. Dicha técnica permite diferenciar los dos grandes grupos bacterianos: las bacterias Gram-positivas y las Gram-negativas; se basa en las diferencias que existen en la composición molecular de las paredes de ambos grupos de bacterias.

Umbonado: con umbón o prominencia mamiliforme en el centro.
<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADN</td>
<td>ácido desoxirribonucleico</td>
</tr>
<tr>
<td>ADNr</td>
<td>ácido desoxirribonucleico ribosomal</td>
</tr>
<tr>
<td>ARN</td>
<td>ácido ribonucleico</td>
</tr>
<tr>
<td>Buffer TE</td>
<td>Buffer Tris-EDTA</td>
</tr>
<tr>
<td>CTAB</td>
<td>Bromuro de hexadeciltrimetilamonio</td>
</tr>
<tr>
<td>DNTP´s</td>
<td>desoxiribonucleótido trifosfato</td>
</tr>
<tr>
<td>EDTA</td>
<td>ácido etilendiaminotetraacético</td>
</tr>
<tr>
<td>H₂O</td>
<td>agua</td>
</tr>
<tr>
<td>LB</td>
<td>colorante de carga (del inglés loading buffer)</td>
</tr>
<tr>
<td>NaCl</td>
<td>cloruro de sodio</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>PCR</td>
<td>reacción en cadena de la polimerasa</td>
</tr>
<tr>
<td>rmp</td>
<td>revoluciones por minuto</td>
</tr>
<tr>
<td>ARNsa</td>
<td>ribonucleasa</td>
</tr>
<tr>
<td>SDS</td>
<td>dodecilsulfato sódico</td>
</tr>
<tr>
<td>TBE</td>
<td>solución amortiguadora tris-ácido bórico-EDTA</td>
</tr>
<tr>
<td>TE</td>
<td>tris EDTA</td>
</tr>
<tr>
<td>TSA</td>
<td>agar soya tripticasa</td>
</tr>
<tr>
<td>UFC</td>
<td>unidades formadoras de colonias</td>
</tr>
<tr>
<td>V</td>
<td>volts</td>
</tr>
</tbody>
</table>
RESUMEN

Las esponjas son un recurso prometedor para el aislamiento de nuevas sustancias activas que puedan contrarrestar la creciente resistencia adquirida por los diferentes agentes patógenos. Dentro de la asociación esponja-bacteria, con respecto a la producción de metabolitos, aún no es evidente si las bacterias asociadas son las verdaderas productoras de dichos compuestos naturales. Existe evidencia que respalda la producción de metabolitos por parte de los microorganismos asociados a las esponjas marinas, como es el caso de algunas bacterias simbiontes de esponjas del género Mycale, de las cuales se han logrado identificar compuestos antitumoriales y antibacteriales. En el presente estudio se lograron aislar un total de 37 cepas de bacterias asociadas a la esponja Mycale sp. recolectada en la localidad La Bruja, dentro de la Bahía de La Paz. En su mayoría se caracterizaron por ser Gram positivas y presentar morfología tipo bacilo. La identificación taxonómica mediante la secuenciación del ADNr 16S indica que la mayoría de estas cepas corresponden al filo Proteobacteria (40%), seguidas de Firmicutes (38%) y Actinobacteria (22%), con una predominancia de las clases Bacilli y α-proteobacteria. El 49% de las cepas presentó actividad antibacteriana al menos frente a una de las cepas patógenas probadas, siendo más sensibles las cepas de Staphylococcus aureus con halos de inhibición entre 13 y 15 mm, Escherichia coli con halos entre 10 y 17 mm y Vibrio carhari con halos entre 12 y 18 mm. Resulta interesante continuar con los estudios de las cepas bioactivas para poder identificar a los compuestos responsables de dicha actividad.

Palabras clave: Esponjas, Mycale, bacterias asociadas, actividad antibacteriana.
INTRODUCCIÓN

En los últimos años, la búsqueda de nuevos compuestos que puedan ser utilizados con fines farmacológicos se ha incrementado considerablemente. Este interés se debe a las diversas enfermedades para las que no hay medicamentos efectivos, la resistencia de agentes patógenos y los avances en el área de la biología molecular que han propiciado un mayor descubrimiento de moléculas “blanco” (Garateix, 2005). Dentro de los productos naturales marinos, las esponjas son los recursos más prometedores en el aislamiento de nuevas sustancias para el desarrollo de fármacos (Blunt et al., 2003). Por otra parte, las esponjas contienen una gran cantidad de microorganismos asociados en íntima relación simbiótica, que puede llegar a representar hasta 60% del total de la biomasa de la esponja (Lee et al., 2001). Se ha postulado que son las bacterias asociadas las responsables de la actividad que presentan las esponjas (Unson et al., 1994).

A partir de las esponjas del género Mycale, se han aislado interesantes compuestos del tipo de los terpenos, saponinas, nucleósidos, policétidos nitrogenados y macrólidos, algunos de los cuales han demostrado poseer una amplia gama de bioactividades (Capon et al., 1997; Matsunaga et al., 1999). En cuanto a estudios de bacterias asociadas a este género son pocos los trabajos realizados (Lee et al., 2006; Wang et al., 2008), y en determinados casos se han aislado compuestos a partir de algunos microorganismos simbiontes (Doshida et al., 1996; Liu et al., 2005; Xin et al., 2005; Xin et al., 2007).
Las bacterias son microorganismos con una amplia gama de metabolismos, característica que les confiere una enorme capacidad de adaptación y que permite a su vez la colonización de casi cualquier ambiente. Está es una de las causas por la que las investigaciones en productos naturales marinos han enfocado sus esfuerzos a obtener compuestos de estos procariontes debido a las ventajas que esto conlleva; su alta tasa de crecimiento poblacional permitiría tener un abastecimiento constante del compuesto, además de que incluso sería posible modificar el organismo genéticamente para mejorar la producción, incrementando aún más la rentabilidad en la industria farmacéutica (Hentschel et al., 2001; Remya et al., 2010).

En este contexto, la presente tesis pretende aportar información acerca de la comunidad bacteriana cultivable asociada a la esponja Mycale sp. recolectada en la localidad de La Bruja dentro de la Bahía de La Paz, y su posible actividad antibacteriana. Esto con el fin de aportar información que contribuya en la búsqueda de cepas con potencial bioactivo.
ANTECEDENTES

Las esponjas a lo largo de su evolución han desarrollado un arsenal de poderosas armas químicas que utilizan como un mecanismo de defensa y protección. Estos compuestos químicos se conocen como metabolitos secundarios y tienen un gran interés en la industria farmacéutica debido a que muchos de ellos presentan interesantes actividades citotóxicas, antivirales, antitumorales y antibióticas (Blunt et al., 2003).

Sin embargo, en los últimos años, se ha intensificado el estudio de los microorganismos asociados a las esponjas puesto que éstas, al ser organismos filtradores, entran en contacto con un sin número de microorganismos que pueden colonizar sus tejidos, ya sea por medio de relaciones simbióticas mutualistas o comensales. De hecho, se estima que estos microorganismos pueden representar entre el 40 y 60% de la biomasa total de la esponja. Las bacterias son las colonizadoras mayoritarias, constituyendo una densidad de 10^8 hasta 10^{10} bacterias gramo$^{-1}$ de peso húmedo (Meyer & Kuever, 2007), incluso un conteo total de bacterias presentes en el tejido de una esponja puede superar de uno a tres órdenes de magnitud un conteo total de bacterias presentes en una muestra de agua marina (Friedrich et al., 2001; Webster & Hill, 2001). Por lo general, la comunidad bacteriana asociada a las esponjas consiste de al menos trece Fila: Proteobacteria, Actinobacteria, Nitrospira, Cyanobacteria, Bacteriodetes, Deinococcus-Thermus, Spirochaetes, Chloroflexi, Planctomycetes, Acidobacteria,
Firmicutes, Poribacteria y Verrucomicrobia, además de que cuenta con miembros del dominio Arquea (Taylor et al., 2007; Remya et al., 2010). De todos estos grupos destacan las Actinobacteria y las Proteobacterias como los Fila de los que se han aislado el mayor número de productos naturales (Santos et al., 2010).

La manera en que las esponjas adquieren estos simbiontes aún no es muy clara, pero existen dos posibilidades: por medio de la filtración del agua de su medio ambiente, o bien por medio de la transmisión directa a las larvas (Hill, 2004; Enticknap et al., 2006).

Los microorganismos asociados a las esponjas pueden estar presentes como simbiontes extracelulares, sobre la superficie de la misma como exosimbiontes, o dentro del mesohilo como endosimbiontes, incluso, si se encuentran dentro de las células de la esponja, se denominan simbiontes intracelulares o, en el caso del núcleo, intranucleares (Hill, 2004). Aunque es bien sabido que los microorganismos asociados a las esponjas son de vital importancia para la biología de las mismas, poco se sabe acerca de las verdaderas tareas que desempeñan. Estudios anteriores han sugerido varios beneficios que la esponja obtiene de estos peculiares simbiontes como es la nutrición por medio de la incorporación directa de la materia orgánica disuelta en el agua, la fijación de nitrógeno y nitrificación gracias a las cianobacterias simbiontes (Wilkinson & Fay, 1979), transporte de metabolitos, contribución a la estabilidad de la estructura de la esponja (rigidez), asistencia en defensas químicas contra depredadores y
organismos incrustantes (Althoff et al., 1998), protección contra rayos UV (Sara, 1971), e incluso remoción de productos de desecho.

Uno de los aspectos que aún no se encuentra muy claro con respecto a la producción de metabolitos en las esponjas es el que involucra al verdadero sintetizador de los productos naturales. Muchas veces se ha asumido que los microorganismos simbiontes son los responsables, pero para hacer una aseveración como esa es necesario tomar en cuenta algunos factores: 1) que su estructura química sea idéntica o similar a la del metabolito producido por otro microorganismo de vida libre; 2) encontrarse en esponjas de grupos taxonómicos diferentes y 3) encontrarse tanto en la esponja como en otro invertebrado que no se alimente de la misma (Unson et al., 1994). Si bien existe evidencia, aunque poca, la que respalda la producción de metabolitos por parte de los microorganismos asociados (Stierle et al., 1988; Elyakov et al., 1991; Unson & Faulkner, 1993; Debitus et al., 1998), ya sea que cooperen con el sistema de defensa de su hospedero (Althoff, 1998) o que simplemente éste último almacene un compuesto producido por el microorganismo del cual se alimenta (Faulkner et al., 1994).

Los primeros estudios que tomaron en cuenta la importancia del papel que tenían las bacterias en las esponjas fueron realizados gracias al avance de la microscopía electrónica. A partir de 1939 se demostró la presencia de bacterias en esponjas marinas (Dosse, 1939; Levi & Levi, 1965), sin embargo, muchos autores consideran que la verdadera investigación comenzó hace cuatro décadas gracias
al trabajo de Vacelet (1970), en el cual se realizó una descripción de las bacterias asociadas a las células de la esponja *Verongia*. En los años siguientes el mismo Vacelet y colaboradores continuaron con la investigación de estos simbiontes, planteando que se trataba principalmente de bacterias heterotróficas y cianobacterias (Vacelet 1971, 1975; Vacelet & Donadey 1977).

Otro de los considerados pioneros en el campo de estudio de la microbiología de esponjas es Wilkinson, quien realizó numerosos trabajos con respecto a la ecología y fisiología de las esponjas y sus poblaciones microbianas, además de elaborar comparaciones entre los microorganismos del agua marina y aquellos que posee la esponja en sus tejidos, encontrando que se trataba de poblaciones particularmente diferentes y concluyendo que, en efecto, las esponjas poseen microorganismos específicamente asociados a ellas en relaciones simbióticas muy estrechas (Wilkinson, 1978a, 1978b, 1978c; Wilkinson & Fay, 1979; Wilkinson & Garrone, 1980; Wilkinson et al. 1981).

Después de realizar varios trabajos con microscopía electrónica, los autores anteriormente mencionados llegaron a la conclusión de que existen tres tipos de poblaciones de microorganismos asociados a las esponjas: a) abundantes poblaciones de microorganismos específicos dentro del mesohilo de la esponja, b) pequeñas poblaciones de bacterias localizadas en el interior de las células de la esponja y c) poblaciones de bacterias no específicas de la esponja, similares a las que se encuentran en el agua circundante.
Wilkinson et al. (1981), realizaron comparaciones entre las bacterias simbiontes de distintas especies de esponjas provenientes del Mar Mediterráneo y la Gran Barrera de Coral en Australia, donde las similitudes encontradas entre estas poblaciones coadyuvaron a la conclusión de un posible ancestro común entre dichas poblaciones. Los autores plantearon que se trataba de relaciones mutualistas obligadas, las cuales pudieron haber surgido incluso antes del período de radiación de dichos invertebrados.

Años antes de la implementación de técnicas genéticas, el estudio de las comunidades bacterianas asociadas a esponjas marinas se apoyaba únicamente en el uso de la descripción morfológica gracias al uso de microscopios de transmisión electrónica y a la innovación en métodos y medios de cultivo. La adición de tejido de la misma esponja a los medios de cultivo permitió aislar cepas nuevas (Imhoff & Trüper, 1976; Wilkinson et al., 1981), mientras que los ensayos de actividad antimicrobiana de difusión en agar con discos y la elaboración de extractos con solventes orgánicos, entre otros métodos, permitieron conocer un poco del enorme potencial bioquímico que representan los microorganismos asociados a las esponjas. Por desgracia, estos métodos no toman en cuenta que las bacterias son, en específico, un grupo de microorganismos difícilmente distingüible por sus características morfológicas, además de que únicamente el 1% de la población total presente en una esponja es cultivable.

A pesar de los grandes esfuerzos que se han realizado para innovar las técnicas y medios de cultivo que permitan aislar un mayor número de bacterias
asociadas a las esponjas marinas, poco se ha logrado avanzar con respecto a la diversidad de sus poblaciones. En años recientes, gracias a los adelantos tecnológicos, ha sido posible el uso de técnicas genéticas y moleculares en la investigación de la estructura de las comunidades bacterianas que habitan la esponja, así como sus posibles requerimientos nutricionales, el nicho que ocupa dentro de la esponja y las relaciones filogenéticas que existen entre dichas comunidades (Distel et al., 2001). Los primeros análisis del 16S ARNr fueron realizados a finales de la década de los 90’s. Althoff et al. (1998) analizaron muestras de la esponja Halichondria panicea, encontrando la presencia dominante de la bacterias pertenecientes al género Rhodobacter; posteriormente López et al. (1999), encontraron especies no descritas anteriormente asociadas a la esponja Discodermia, como evidencia prometedora para revelar la gran diversidad de microorganismos que habitan en estos peculiares invertebrados marinos.

Posteriormente el uso de otros métodos moleculares como la Hibridación Fluorescente in situ (FISH) o la electroforesis en gel con gradiente de desnaturalización (DGGE), entre otras, han sido de gran ayuda en el descubrimiento de nuevas especies de bacterias asociadas, tal es el caso del trabajo de Webster et al. (2001), quienes utilizaron la técnica de FISH y encontraron una gran diversidad dentro de la comunidad bacteriana asociada a la esponja Rhopaloëides odorabile, además de que a partir de la información obtenida modificaron diferentes medios de cultivo para aumentar el número de cepas cultivables de dicha esponja, lo que permitió aislar un mayor número de
bacterias no reportadas anteriormente, siendo la mayoría pertenecientes al grupo de los actinomicetos.

Las técnicas moleculares no sólo han revelado la gran diversidad de microorganismos que se encuentran asociados a las esponjas, sino que también han permitido avances en estudios sobre las poblaciones bacterianas de dichos invertebrados. Hentschel *et al.* (2002) mediante el uso de técnicas genéticas, encontraron una comunidad microbiana uniforme entre tres esponjas de océanos y taxa diferentes, inclusive muy distinta a la presente en el agua marina y sedimento circundante.

En lo que respecta a las esponjas del género *Mycale*, las comunidades bacterianas asociadas han sido poco estudiadas, a pesar de ello, diversos grupos cultivables han sido reportados: Bacteroidetes, Acidobacteria, Firmicutes, Actinobacteria, Chloroflexi; de los cuales el grupo de las Proteobacterias incluyendo todas sus divisiones son quienes han exhibido una mayor dominancia en las comunidades bacterianas (Lee *et al.*, 2006; Wang *et al.*, 2008).

A partir de algunos microorganismos simbiontes del género *Mycale*, se han aislado algunos compuestos, como el agente antibacteriano exophilina A obtenido a partir del hongo *Exophiala pisciphila* NI10102, aislado de la esponja *Mycale adhaerenes* (Doshida *et al.*, 1996). La undecilprodigiosina aislada a partir de una actinobacteria de la especie *Mycale plumose* que habita las costas de China (Liu *et al.*, 2005). En la misma área geográfica, otro organismo de la misma especie, presentó un hongo asociado denominado *Penicillium auratiogriseum*, del cual fue
posible aislar dos compuestos con una alta actividad antitumoral conocidos como (S)-2,4-dihidroxi-1-butil-(4-hidroxi) benzoato y la fructigenina A (Xin et al., 2005). Además, dos nuevos alcaloides aurantiomida B y C, fueron aislados del hongo Penicillium auratiogriseum asociado a la esponja Mycale plumose (Xin et al., 2007).

A pesar de que se cuenta con poca información acerca de la bioactividad que puedan poseer las bacterias asociadas a las esponjas del género Mycale, los grupos registrados coinciden con los reportados en otras esponjas marinas, de las cuales si se han podido realizar ensayos de bioactividad, en específico de actividad antibacteriana, tal es el caso de las α y γ-Proteobacterias, Firmicutes, y Actinobacteria, las cuales han demostrado tener amplia capacidad bacteriolítica (Albrechts, 2006; Muscholl-Silberhorn et al., 2007).

JUSTIFICACIÓN

De los pocos estudios realizados para identificar microrganismos asociados a esponjas del género Mycale, se puede rescatar que se han observado algunos que presentan compuestos con interesante actividad antibacteriana. En particular el género Mycale se encuentra de manera abundante en la Bahía de la Paz y dado que nada se conoce acerca de las bacterias asociadas y la actividad biológica que presentan, resulta importante realizar estudios que contribuyan a conocer la diversidad de microorganismos y su posible potencial como fuente de compuestos naturales bioactivos, por lo que en el presente trabajo se aislaron e identificaron
las bacterias asociadas a *Mycale* sp. así como su actividad antibacteriana frente a bacterias patógenas.

IDENTIFICACIÓN Y DELIMITACIÓN DEL PROBLEMA

La resistencia a antibióticos se ha convertido en problema global y de sumo interés para las autoridades de salud pública. El uso desmedido de antibióticos durante los últimos 50 años ha favorecido a la selección de cepas resistentes y difíciles de combatir (McMichael, 2000), por lo que la investigación enfocada a descubrir nuevos antibióticos ha ganado una buena posición.

En años recientes la industria farmacéutica ha apostado por los productos naturales de origen marino debido a que representan una alternativa prometedora para la elaboración de nuevos fármacos. En años recientes se ha documentado la gran diversidad de microorganismos que se encuentran asociados con las esponjas marinas y su amplio potencial biotecnológico. Por lo que resulta interesante estudiar a la esponja *Mycale* sp. de la Bahía de La Paz, B.C.S., con la finalidad de aislar nuevas cepas bacterianas que presenten actividad antibacteriana frente a cepas patógenas.

OBJETIVO GENERAL

Aislar, identificar y evaluar la actividad antibacteriana de las bacterias heterótrofas cultivables asociadas a la esponja *Mycale* sp. de la bahía de La Paz, B.C.S., México.
OBJETIVOS PARTICULARES

1. Aislar las cepas asociadas a la esponja Mycale sp.
2. Identificar molecularmente las bacterias heterótrofas cultivables asociadas a la esponja Mycale sp.
3. Evaluar la actividad antibacteriana de las cepas aisladas frente a cepas patógenas.

MATERIAL Y MÉTODOS

Área de estudio

La Bahía de la Paz se encuentra en la región suroeste del Golfo de California y posee una extensión aproximada de 2000 km². Posee fondos de arena y fragmentos de carbonato de calcio (Contreras, 1985). Las temperatura mínima es de 18.8° C en diciembre y la máxima de 32° C en julio (Espinoza et al., 1979), presenta valores de oxígeno disuelto entre 2.73 mL L⁻¹ y 7.3 mL L⁻¹, la salinidad supera los 35 ups por el poco aporte de agua dulce y las altas tasas de evaporación (Espinoza et al., 1979; Villaseñor, 1979), mientras que el régimen de mareas es mixto-semidiurno (Obeso et al., 1993). En particular, la localidad La Bruja se caracteriza por presentar una profundidad entre 90 cm hasta 8 m, constituida en la zona adyacente a la costa por comunidades alternadas de macroalgas, diversas especies de esponjas (principalmente los género Haliclonia e
Ircinia), parches de coral (*Porites* y *Pocillopora*) así como otros invertebrados y peces. Mientras que las zonas profundas (4 a 8 m), se caracterizan por ser un sustrato arenoso con presencia de pocos parches de coral (*Pocillopora*), pasto marino y esponjas del género *Mycale* (Ortiz-Aguirre com.pers.).

Recolección de muestras

La recolección de los ejemplares se realizó en la localidad La Bruja (24° 14´39" N y 110° 19´53") dentro de la Bahía de La Paz (Fig. 1).

Figura 1. Ubicación del área de estudio. Tomado de Vázquez *et al.*, 2011.
Se recolectaron manualmente cinco ejemplares de la esponja *Mycale* sp. así como tres muestras de agua de mar mediante buceo libre a una profundidad aproximada de 5 m; se procuró que hubiera una separación mínima de 3 m entre cada organismo seleccionado. Posteriormente las muestras fueron preservadas en hielo y trasladadas al laboratorio de Microbiología y Biología Molecular del Centro Interdisciplinario de Ciencias Marinas (CICIMAR).

Identificación taxonómica de *Mycale* sp.

La identificación taxonómica de la esponja fue realizada a nivel de género por personal del ICMyL de la UNAM, mediante la visualización de las espículas en el microscopio óptico compuesto. La presencia en particular de las microscleras denominadas anisoqueelas palmeadas, es el carácter taxonómico que define a este género (Carballo & Barraza, 2010). La identidad de la especie no pudo ser definida debido a la complejidad que representa su clasificación así como a los pocos estudios taxonómicos que se han realizado en la región, por lo que se requieren estudios más completos por parte de taxónomos expertos. Los ejemplares utilizados en el presente estudio se encuentran depositados en las instalaciones del laboratorio de Microbiología en el Centro Interdisciplinario de Ciencias Marinas (CICIMAR-IPN). En la figura 2 se observa un ejemplar del área de estudio.
Phylum: Porifera

Clase: Demospongiae

Orden: Poecilosclerida

Familia: Mycalidae (Lundbeck, 1905)

Género: Mycale (Gray, 1867)

Figura 2. Mycale sp. Fotografía: Carlos Sánchez.
Trabajo en Laboratorio

En el laboratorio, muestras fueron procesadas de manera inmediata para lo cual, se cortaron trozos de cada esponja con un bisturí esterilizado, los cuales fueron enjuagados con agua de mar estéril y pesados hasta obtener 5 g. Posteriormente los trozos se maceraron con 45 mL de agua de mar filtrada con una membrana de policarbonato de 0.2 μm y esterilizada mediante autoclave. A partir de este macerado se realizaron diluciones decimales de 10^{-1} a 10^{-5}, obteniendo tres réplicas para cada dilución. De las diferentes diluciones se tomaron 100 μL de la muestra de esponja macerada y de las muestras de agua de mar, las cuales se sembraron en cajas Petri con agar marino y se incubaron a 35°C durante 24 a 48 hrs. Una vez que se observó crecimiento bacteriano se inició el conteo de colonias para determinar el número de Unidades Formadoras de Colonias (UFC’s) en cada una de las cajas Petri que contaban con una densidad de 30 a 300 colonias (Thakur & Anil, 2000). Después de dicho conteo, se procedió a hacer la descripción de las colonias aisladas con ayuda de estereomicroscopio marca ZEISS Stemi (SVII) para llevar a cabo la selección de morfotipos diferentes.

Posteriormente las colonias seleccionadas fueron resembradas nuevamente en medio de cultivo Agar Tripticasa Soya (TSA) al 3.5% y se incubaron a 35°C durante 24 horas. Una vez que se observó crecimiento las cepas fueron resembradas por estría cruzada en el mismo medio. La pureza de las cepas se confirmó nuevamente mediante la morfología colonial y microscópica.
(tinción de Gram). Finalmente, las cepas purificadas se resembraron en medio líquido para la obtención de biomasa.

Aislamiento de ADN

Se tomaron 0.5 mL de muestra de los cultivos en medio líquido. Las células se cosecharon por centrifugación a 14000 rpm por 10 minutos a 4° C, el sobrenadante se decantó y al precipitado resultante se le adicionó buffer TE pH 8.0, SDS (Dodecil sulfato de sodio) al 10% y Proteinasa K, la mezcla se agitó en un vortex y se incubó durante una hora a 37° C. Transcurrido este tiempo se adicionaron 100 µL de NaCl 5M y 80 µL CTAB/NaCl mezclando por inversión e incubando 10 minutos a 65° C. Posteriormente se agregó un volumen de fenol: cloroformo: alcohol isoamílico (25:24:1), se agitó en vortex hasta obtener una solución lechosa, se centrifugó a 14000 rpm por 10 minutos a 24° C, el sobrenadante se recuperó y se transfirió a tubos de 2.0 mL. Se realizó una segunda extracción con un volumen igual de cloroformo: alcohol isoamílico (24:1) mezclándose por inversión. Los tubos se centrifugaron a 14000 rpm por 5 minutos a 4° C. La fase acuosa fue recuperada y la precipitación del ADN se llevó a cabo adicionando 0.6 volúmenes de isopropanol preenfriado a 20 °C. Los tubos se incubaron a 20 °C durante toda la noche. Transcurrido el tiempo de incubación los tubos fueron centrifugados a 14000 rpm por 20 minutos a 4° C. El precipitado resultante (ADN) se lavó con etanol al 70% preenfriado a 20° C, y fue centrifugado nuevamente a 14000 rpm por 10 min; el proceso se realizó en dos ocasiones. La
masa precipitada se dejó secar al aire y se resuspendió en TE pH 8.0 adicionándole ARNsa (1 \(\mu\)g\(\mu\)L\(^{-1}\)). Los tubos se incubaron en un baño maría Thermolyne Dry-Bath a 37° C por una hora. Se realizó una segunda extracción con fenol: cloroformo: alcohol isoamílico (25:24:1) para eliminar la ARNsa siguiendo el procedimiento mencionado anteriormente. Posteriormente el ADN se visualizó en geles de agarosa al 1% teñidos con SYBER Gold y buffer TBE (Tris-Ácido Bórico-EDTA). Los geles fueron observados bajo luz ultravioleta y se documentaron con un fotodocumentador marca Apollo Instrumentation modelo STX-20.M (Sambrook & Russell 2001; Ausubel et al., 2002). Para la cuantificación de ADN, se realizó una dilución de 1:250 con H\(_2\)O destilada y posteriormente homogenizada en un vortex. Se leyeron las absorbancias con la ayuda de un espectrofotómetro marca Eppendorf Biophotometer 22331 a 260 nanómetros. Una vez obtenidas las absorbancias se calculó la concentración de ADN que contenía cada muestra.

Amplificación de ADN mediante PCR.

El ADN\(r\) fue amplificado mediante PCR (reacción de cadena de la polimerasa) utilizando oligonucleótidos universales para bacterias 27f (5´-GAGTTTGATCCTGGCTCA-3´) y 1385r (5´-GAGTTTGATCCTGGCCTCA-3´). La reacción de amplificación contenía 100 ng de ADN, 0.25 \(\mu\)M de cada oligonucleótilo, 10mM de dNTP’s, 5 \(\mu\)L de buffer PCR 10X, MgSO\(_4\) 3.33 mM, 1.5 U de Taq polimerasa (INVITROGEN) y agua destilada estéril para tener un
volumen final de 50 µL (González-Acosta, 2006). Las muestras fueron amplificadas en un termociclador BIORAD MJ Mini PTC-1148 bajo las siguientes condiciones: 4 min a 94° C, 1 min a 55° C, 2 min a 72° C, 29 ciclos de 94° C durante 1 min y 10 min a 72° C. Los productos de PCR se evaluaron en geles de agarosa al 1% teñidos con SYBER Gold. De cada reacción se tomaron 3.0 µL y se mezclaron con buffer de carga (LB) (Sambrook & Russell 2001). Como estándar se utilizaron 2 µL del marcador de 10 Kb DNA (INVITROGEN). La electroforesis se corrió a 100V durante 30 minutos. Los resultados se documentaron en un fotodocumentador marca Benchtop UVP.

Secuenciación y análisis genético

El producto de PCR fue enviado a la empresa MACROGEN (Corea) para la purificación del ADN y secuenciación parcial. Las muestras se purificaron usando la precipitación con etanol y la secuenciación se llevó a cabo utilizando un kit BigDye terminator v3.1 Cycle y se corrieron en un secuenciador automático 3730XL. Una vez obtenidas las secuencias, éstas fueron editadas por medio del programa FinchTV 1.4.0, posteriormente cada una fue comparada con la base de datos del National Center for Biotechnology Information (NCBI) para encontrar aquella que presentara la mayor similitud e identificar la posible especie de la cual se trataba. Después las secuencia se estandarizaron a 780 pares de bases y se alinearon por medio del software CLUSTAL W. Dicho alineamiento fue refinado manualmente utilizando el programa GeneDoc 2.7.000, finalmente se obtuvo un
árbol filogenético utilizando el método de inferencia bayesiana por medio del software Mr Bayes versión 3.2.1, con cuatro cadenas de 3,000,000 de generaciones y muestreos cada 100 generaciones. El árbol fue editado mediante el programa FigTree v1.3.1.

Ensayo de actividad antibacteriana

El ensayo de actividad antibacteriana se realizó empleando la técnica de difusión en agar (NCCLS, 1993; Elyakov, 1996). Se utilizaron las cepas de bacterias patógenas (*Staphylococcus aureus* y *Escherichia coli*) y cepas de vibrios potencialmente patógenos en acuacultura (*Vibrio proteolyticus* ATCC15338, *Vibrio carcharie* ATCC35084, *Vibrio campbelli* ATCC25920, *Vibrio harveyi* ATCC14126, *Vibrio parahaemolyticus* ATCC17802, *Vibrio azureus* y *Vibrio natriegens*). Al inicio de la serie de los bioensayos, se preparó un pre-inoculo de cada cepa en un medio de TSA, los cuales fueron incubados por 24 h a 35° C. Posteriormente se preparó una suspensión celular con las cepas patógenas y se ajustó a una densidad óptica (DO) de 1 a una λ de 580 nm lo que corresponde aproximadamente a 1x10⁸ cel mL⁻¹. Con esta suspensión y se procedió a sembrar masivamente cada una de las cepas patógenas en placas con agar Müller-Hinton. Para las cepas de vibrios, se realizó el mismo procedimiento únicamente utilizando agar TSA al 3.5%.

Por otro lado, las cepas de las bacterias asociadas a la esponja a probar, fueron resembradas en medio de cultivo líquido y se incubaron 24 horas a 35° C.
Posteriormente, el medio fue homogeneizado y se tomó una alícuota de 1.5 mL. Dicha muestra se centrifugó para obtener un sobrenadante, el cual se colocó en pozos de 6 mm realizados con un sacabocados en las cajas de Petri previamente sembradas con las cepas patógenas.

Las cajas de Petri con los orificios se colocaron en el refrigerador durante 40 min, con el fin de retardar el crecimiento microbiano mientras la sustancia antibiótica se difundía sobre el medio. Posteriormente, las cajas de Petri se incubaron a una temperatura de 35° C y se registraron los resultados encontrados a las 24 h midiendo los diámetros de los halos de inhibición (en mm). Los ensayos se realizaron con tres réplicas cada uno y como control positivo se utilizó Ampicilina 1 µgµL⁻¹.
RESULTADOS

Aislamiento de bacterias cultivables asociadas a *Mycale* sp.

Los conteos de las colonias aisladas a partir del tejido de la esponja *Mycale* sp, permitieron determinar que la comunidad bacteriana cultivable fue de 2.09×10^7 CFU g$^{-1}$. A diferencia del agua de mar, donde sólo se contabilizaron 58×10^2 CFU mL$^{-1}$. El número total de cepas aisladas fue de 50, de las cuales considerando su morfología colonial y microscópica, se seleccionaron 37 (Tabla I). La tinción de Gram y su posterior observación al microscopio evidenció que la mayoría de las cepas aisladas (20) fueron Gram positivas, mientras que 17 cepas fueron Gram negativas. Predominando en ambos casos la morfología de bacilos sobre los cocos (Fig. 3).

Figura 3. Número de cepas Gram positivas y Gram negativas morfológicamente diferentes aisladas a partir de la esponja *Mycale* sp.
Tabla I. Morfología colonial y microscópica de las bacterias cultivables aisladas de la esponja *Mycale* sp.

<table>
<thead>
<tr>
<th>Cepa Id</th>
<th>Borde</th>
<th>Forma</th>
<th>Elevación</th>
<th>Color</th>
<th>Morfología</th>
<th>Gram</th>
</tr>
</thead>
<tbody>
<tr>
<td>My0101</td>
<td>Entero</td>
<td>Circular</td>
<td>Crateriforme</td>
<td>Blanco</td>
<td>Bacilos</td>
<td>-</td>
</tr>
<tr>
<td>My0102</td>
<td>Entero</td>
<td>Circular</td>
<td>Poco elevado</td>
<td>Beige</td>
<td>Bacilos</td>
<td>-</td>
</tr>
<tr>
<td>My0106</td>
<td>Ondulado</td>
<td>Circular</td>
<td>Elevado</td>
<td>Blanco</td>
<td>Bacilos</td>
<td>-</td>
</tr>
<tr>
<td>My0108</td>
<td>Entero</td>
<td>Circular</td>
<td>Elevado</td>
<td>Blanco</td>
<td>Bacilos</td>
<td>-</td>
</tr>
<tr>
<td>My0110</td>
<td>Entero</td>
<td>Circular</td>
<td>Elevado</td>
<td>Ámbar</td>
<td>Bacilos</td>
<td>-</td>
</tr>
<tr>
<td>My0111</td>
<td>Entero</td>
<td>Circular</td>
<td>Elevado</td>
<td>Blanco</td>
<td>Bacilos</td>
<td>-</td>
</tr>
<tr>
<td>My0113</td>
<td>Entero</td>
<td>Circular</td>
<td>Plano</td>
<td>Blanco</td>
<td>Bacilos</td>
<td>-</td>
</tr>
<tr>
<td>My0114</td>
<td>Entero</td>
<td>Irregular</td>
<td>Elevado</td>
<td>Blanco</td>
<td>Bacilos</td>
<td>-</td>
</tr>
<tr>
<td>My0115</td>
<td>Entero</td>
<td>Circular</td>
<td>Elevado</td>
<td>Naranja claro</td>
<td>Bacilos</td>
<td>-</td>
</tr>
<tr>
<td>My0119</td>
<td>Entero</td>
<td>Circular</td>
<td>Elevado</td>
<td>Blanco claro</td>
<td>Bacilos</td>
<td>-</td>
</tr>
<tr>
<td>My0121</td>
<td>Entero</td>
<td>Circular</td>
<td>Elevado</td>
<td>Ámbar</td>
<td>Bacilos</td>
<td>-</td>
</tr>
<tr>
<td>My0125</td>
<td>Entero</td>
<td>Irregular</td>
<td>Umbonado</td>
<td>Ámbar claro</td>
<td>Bacilos</td>
<td>-</td>
</tr>
<tr>
<td>My0128</td>
<td>Rizado</td>
<td>Circular</td>
<td>Plano</td>
<td>Blanco pálido</td>
<td>Bacilos</td>
<td>-</td>
</tr>
<tr>
<td>My0135</td>
<td>Ondulado</td>
<td>Irregular</td>
<td>Plano</td>
<td>Blanco</td>
<td>Bacilos</td>
<td>-</td>
</tr>
<tr>
<td>My0137</td>
<td>Entero</td>
<td>Irregular</td>
<td>Elevado</td>
<td>Blanco</td>
<td>Bacilos</td>
<td>-</td>
</tr>
<tr>
<td>My0106</td>
<td>Entero</td>
<td>Circular</td>
<td>Plano</td>
<td>Beige tenue</td>
<td>Cocos</td>
<td>-</td>
</tr>
<tr>
<td>My0136</td>
<td>Entero</td>
<td>Irregular</td>
<td>Elevado</td>
<td>Lima</td>
<td>Cocos</td>
<td>-</td>
</tr>
<tr>
<td>My0104</td>
<td>Ondulado</td>
<td>Irregular</td>
<td>Plano</td>
<td>Rosa tenue</td>
<td>Bacilos</td>
<td>+</td>
</tr>
<tr>
<td>My0116</td>
<td>Entero</td>
<td>Circular</td>
<td>Elevado</td>
<td>Beige</td>
<td>Bacilos</td>
<td>+</td>
</tr>
<tr>
<td>My0117</td>
<td>Rizado</td>
<td>Irregular</td>
<td>Plano</td>
<td>Amarillo claro</td>
<td>Bacilos</td>
<td>+</td>
</tr>
<tr>
<td>My0118</td>
<td>Entero</td>
<td>Circular</td>
<td>Plano</td>
<td>Naranja</td>
<td>Bacilos</td>
<td>+</td>
</tr>
<tr>
<td>My0122</td>
<td>Poco rizado</td>
<td>Circular</td>
<td>Elevado</td>
<td>Lima</td>
<td>Bacilos</td>
<td>+</td>
</tr>
<tr>
<td>My0123</td>
<td>Filamentoso</td>
<td>Circular</td>
<td>Poco elevado</td>
<td>Mamey claro</td>
<td>Bacilos</td>
<td>+</td>
</tr>
<tr>
<td>My0130</td>
<td>Rizado</td>
<td>Irregular</td>
<td>Plano</td>
<td>Blanco</td>
<td>Bacilos</td>
<td>+</td>
</tr>
<tr>
<td>My0131</td>
<td>Entero</td>
<td>Circular</td>
<td>Plano</td>
<td>Leche</td>
<td>Bacilos</td>
<td>+</td>
</tr>
<tr>
<td>My0132</td>
<td>Filamentoso</td>
<td>Circular</td>
<td>Poco elevado</td>
<td>Mamey claro</td>
<td>Bacilos</td>
<td>+</td>
</tr>
<tr>
<td>My0133</td>
<td>Ondulado</td>
<td>Circular</td>
<td>Plano</td>
<td>Blanco</td>
<td>Bacilos</td>
<td>+</td>
</tr>
<tr>
<td>My0134</td>
<td>Lobulado</td>
<td>Circular</td>
<td>Plano</td>
<td>Mamey claro</td>
<td>Bacilos</td>
<td>+</td>
</tr>
<tr>
<td>My0103</td>
<td>Entero</td>
<td>Irregular</td>
<td>Plano</td>
<td>Blanco pálido</td>
<td>Cocos</td>
<td>+</td>
</tr>
<tr>
<td>My0107</td>
<td>Entero</td>
<td>Circular</td>
<td>Elevado</td>
<td>Mamey</td>
<td>Cocos</td>
<td>+</td>
</tr>
<tr>
<td>My0109</td>
<td>Entero</td>
<td>Circular</td>
<td>Plano</td>
<td>Amarillo claro</td>
<td>Cocos</td>
<td>+</td>
</tr>
<tr>
<td>My0112</td>
<td>Entero</td>
<td>Circular</td>
<td>Elevado</td>
<td>Blanco pálido</td>
<td>Cocos</td>
<td>+</td>
</tr>
<tr>
<td>My0120</td>
<td>Entero</td>
<td>Circular</td>
<td>Plano</td>
<td>Lima</td>
<td>Cocos</td>
<td>+</td>
</tr>
<tr>
<td>My0124</td>
<td>Entero</td>
<td>Irregular</td>
<td>Elevado</td>
<td>Amarillo claro</td>
<td>Cocos</td>
<td>+</td>
</tr>
<tr>
<td>My0126</td>
<td>Entero</td>
<td>Circular</td>
<td>Elevado</td>
<td>Mamey</td>
<td>Cocos</td>
<td>+</td>
</tr>
<tr>
<td>My0127</td>
<td>Entero</td>
<td>Irregular</td>
<td>Elevado</td>
<td>Verde</td>
<td>Cocos</td>
<td>+</td>
</tr>
<tr>
<td>My0129</td>
<td>Entero</td>
<td>Irregular</td>
<td>Pulvinado</td>
<td>Amarillo leche</td>
<td>Cocos</td>
<td>+</td>
</tr>
</tbody>
</table>

Las cepas fueron agrupadas dependiendo de su morfología y tinción de Gram.
Identificación molecular de las bacterias cultivables asociadas a la esponja *Mycale* sp.

De las 37 cepas aisladas de la esponja *Mycale* sp., su ADN fue amplificado mediante Reacción de Cadena Polimerasa (PCR). En la Figura 4 se pueden observar las bandas de amplificación de cada cepa.

El análisis (BLAST) de alineamiento entre las secuencias parciales del ADNr 16S amplificado y las reportadas en el National Center for Biotechnology Information (NCBI), permitió establecer la identificación taxonómica de las 37 diferentes cepas aisladas (Tabla II).
<table>
<thead>
<tr>
<th>Clave</th>
<th>Pariente más cercano</th>
<th>No. De Acceso (NCBI)</th>
<th>% de identidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>My0108</td>
<td>Alpha proteobacterium JE061</td>
<td>DQ097237.1</td>
<td>100</td>
</tr>
<tr>
<td>My0111</td>
<td>Pseudovibrio denitrificans CBMAI 1084</td>
<td>JN615432.1</td>
<td>100</td>
</tr>
<tr>
<td>My0112</td>
<td>Staphylococcus epidermidis CIFRI P-TSB-24</td>
<td>JF784034.1</td>
<td>100</td>
</tr>
<tr>
<td>My0119</td>
<td>Alpha proteobacterium JE011</td>
<td>DQ097251.1</td>
<td>100</td>
</tr>
<tr>
<td>My0122</td>
<td>Bacillus sp. Hs42</td>
<td>JF803860.1</td>
<td>100</td>
</tr>
<tr>
<td>My0126</td>
<td>Kocuria palustris TY</td>
<td>JF769747.1</td>
<td>100</td>
</tr>
<tr>
<td>My0102</td>
<td>Lysobacter sp. KSA20</td>
<td>GU048937.1</td>
<td>99</td>
</tr>
<tr>
<td>My0104</td>
<td>Bacillus sp. B105</td>
<td>EU384288.1</td>
<td>99</td>
</tr>
<tr>
<td>My0105</td>
<td>Alpha proteobacterium JE062</td>
<td>DQ097238.3</td>
<td>99</td>
</tr>
<tr>
<td>My0106</td>
<td>Halobacillus kuroshimensis HNS013</td>
<td>JN128247.1</td>
<td>99</td>
</tr>
<tr>
<td>My0107</td>
<td>Kocuria sp. E7</td>
<td>EU372971.1</td>
<td>99</td>
</tr>
<tr>
<td>My0109</td>
<td>Kocuria sp. 0712C1-3</td>
<td>HM222676.1</td>
<td>99</td>
</tr>
<tr>
<td>My0110</td>
<td>Vibrio azureus HNS029</td>
<td>JN128263.1</td>
<td>99</td>
</tr>
<tr>
<td>My0113</td>
<td>Alpha proteobacterium JE025</td>
<td>DQ097259.2</td>
<td>99</td>
</tr>
<tr>
<td>My0114</td>
<td>Alpha proteobacterium F20</td>
<td>DQ227657.1</td>
<td>99</td>
</tr>
<tr>
<td>My0115</td>
<td>Pseudalteromonas sp. GAS1</td>
<td>EU340848.1</td>
<td>99</td>
</tr>
<tr>
<td>My0117</td>
<td>Bacillus sp. BC3</td>
<td>EU768821.1</td>
<td>99</td>
</tr>
<tr>
<td>My0121</td>
<td>Vibrio harvey 11-6DEP</td>
<td>GQ203111.1</td>
<td>99</td>
</tr>
<tr>
<td>My0123</td>
<td>Bacillus sp. M71_S32</td>
<td>FN179280.1</td>
<td>99</td>
</tr>
<tr>
<td>My0124</td>
<td>Brachybacterium sp. JSM 073088</td>
<td>EU925629.1</td>
<td>99</td>
</tr>
<tr>
<td>My0125</td>
<td>Halobacillus trueperi HLSB3</td>
<td>FJ999554.1</td>
<td>99</td>
</tr>
<tr>
<td>My0129</td>
<td>Micrococcus sp. MR20-2</td>
<td>GQ163718.1</td>
<td>99</td>
</tr>
<tr>
<td>My0133</td>
<td>Bacillus licheniformis ML36</td>
<td>JN791357.1</td>
<td>99</td>
</tr>
<tr>
<td>My0135</td>
<td>Alpha proteobacterium CRA 15M</td>
<td>AY562566.1</td>
<td>99</td>
</tr>
<tr>
<td>My0137</td>
<td>Alpha proteobacterium JE025</td>
<td>DQ097259.2</td>
<td>99</td>
</tr>
<tr>
<td>My0120</td>
<td>Micrococcus sp. MG-2010-D12</td>
<td>FR750272.1</td>
<td>98</td>
</tr>
<tr>
<td>My0134</td>
<td>Bacillus sp. MM20</td>
<td>JN791374.1</td>
<td>98</td>
</tr>
<tr>
<td>My0130</td>
<td>Bacillus licheniformis CSMCRI-6</td>
<td>HQ156242.1</td>
<td>95</td>
</tr>
<tr>
<td>My0136</td>
<td>Alpha proteobacterium JE063</td>
<td>DQ097239.1</td>
<td>92</td>
</tr>
<tr>
<td>My0103</td>
<td>Kocuria marina CMGS2</td>
<td>EU073966.1</td>
<td>86</td>
</tr>
<tr>
<td>My0132</td>
<td>Bacillus sp. CNJ941 PL04</td>
<td>DQ448803.1</td>
<td>86</td>
</tr>
<tr>
<td>My0118</td>
<td>Bacillus sp. MOLA 508</td>
<td>AM990733.1</td>
<td>84</td>
</tr>
<tr>
<td>My0131</td>
<td>Bacillus sp. MB127</td>
<td>AB536952.1</td>
<td>84</td>
</tr>
<tr>
<td>My0101</td>
<td>Lysobacter capsici M63031</td>
<td>HM032820.1</td>
<td>82</td>
</tr>
<tr>
<td>My0128</td>
<td>Rhodobacteraceae bacterium W97</td>
<td>GU826608.1</td>
<td>80</td>
</tr>
<tr>
<td>My0116</td>
<td>Bacillus licheniformis F198_A07</td>
<td>DQ234840.1</td>
<td>79</td>
</tr>
</tbody>
</table>
Figura 5. Porcentaje de bacterias correspondientes a los diferentes Fila.

Tabla III. Condensado sobre la posición taxonómica de cada una de las secuencias de las cepas aisladas de la esponja Mycale sp.

<table>
<thead>
<tr>
<th>Clase</th>
<th>Orden</th>
<th>Familia</th>
<th>Género</th>
<th>No. Cepas</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-proteobacteria</td>
<td>Rhodobacterales</td>
<td>Rhodobacteraceae</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>α-proteobacteria</td>
<td>Rhodobacterales</td>
<td>Rhodobacteraceae</td>
<td>Pseudovibrio</td>
<td>1</td>
</tr>
<tr>
<td>γ-proteobacteria</td>
<td>Xanthomonadales</td>
<td>Xanthomonadaceae</td>
<td>Lysobacter</td>
<td>2</td>
</tr>
<tr>
<td>γ-proteobacteria</td>
<td>Vibrionales</td>
<td>Vibrionaceae</td>
<td>Vibrio</td>
<td>2</td>
</tr>
<tr>
<td>γ-proteobacteria</td>
<td>Alteromonadales</td>
<td>Pseudoalteromonadaceae</td>
<td>Pseudoalteromonas</td>
<td>1</td>
</tr>
<tr>
<td>Actinobacteridae</td>
<td>Actinomycetales</td>
<td>Dermabacteraceae</td>
<td>Brachybacterium</td>
<td>1</td>
</tr>
<tr>
<td>Actinobacteridae</td>
<td>Actinomycetales</td>
<td>Micrococcaceae</td>
<td>Micrococcus</td>
<td>3</td>
</tr>
<tr>
<td>Actinobacteridae</td>
<td>Actinomycetales</td>
<td>Micrococcaceae</td>
<td>Kocuria</td>
<td>4</td>
</tr>
<tr>
<td>Bacilli</td>
<td>Bacillales</td>
<td>Staphylococcaceae</td>
<td>Staphylococcus</td>
<td>1</td>
</tr>
<tr>
<td>Bacilli</td>
<td>Bacillales</td>
<td>Bacillaceae</td>
<td>Halobacillus</td>
<td>2</td>
</tr>
<tr>
<td>Bacilli</td>
<td>Bacillales</td>
<td>Bacillaceae</td>
<td>Bacillus</td>
<td>11</td>
</tr>
</tbody>
</table>

En resumen, la mayoría de las bacterias identificadas corresponden al filo Proteobacteria, seguidas de Firmicutes y Actinobacteria, los cuales representaron el 40, 38 y 22% respectivamente (Fig. 5). Con una predominancia de las clases
Bacilli, que consistió de 14 cepas (38%) y α-proteobacteria con 10 cepas (27%), de estas últimas, ocho fueron identificadas únicamente a nivel de Clase y una a nivel Familia (Tabla III).

En la Figura 6 se observa claramente la dominancia del género Bacillus (11 cepas), seguido de los géneros Kocuria (cuatro cepas) y Micrococcus (tres cepas). Los géneros Vibrio, Halobacillus y Lysobacter únicamente contaron con la presencia de dos cepas, finalmente los géneros Pseudoalteromonas, Brachybacterium y Staphylococcus fueron representados por una sola cepa.

En cuanto a la diversidad de especies aisladas, Bacillus sp. seguida de Bacillus licheniformes y Micrococcus sp. fueron las más frecuentes (Fig. 7).

El árbol de homologías elaborado por medio de un análisis Bayesiano presenta valores de probabilidad posterior mayores a 0.5 (Fig. 8), también se observa la formación de tres grandes grupos bien soportados (100% pp) y conformados por los Fila Proteobacteria, Actinobacteria y Firmicutes. Cada uno de estos grandes clados poseen, a su vez, diferentes ramas o subgrupos. El primer clado, Proteobacteria, presenta dos grandes divisiones compuestas por los grupos α-proteobacteria y γ-proteobacteria, los cuales a su vez poseen pequeñas ramificaciones; los grupos Vibrio, Pseudoalteromonas y Lysobacter perteneciendo a γ-proteobacteria, y Pseudovibrio a α-proteobacteria. El segundo clado, Firmicutes, se forman dos grandes ramas compuestas por los grupos Bacillus y Hallobacillus. Finalmente el clado actinobacteria posee tres grupos conformados por Micrococcus, Kocuria y Brachybacterium.
Figura 6. Representación porcentual de los diferentes géneros de bacterias aisladas de la esponja *Mycate* sp.

Figura 7. Especies de bacterias aisladas de la esponja *Mycate* sp.
Figura 8. Árbol bayesiano obtenido a partir de la secuencias parciales del ADNr 16S de cepas cultivables asociadas a *Mycale* sp.
Actividad antibacteriana frente a cepas de bacterias patógenas

Los resultados de los ensayos de actividad antibacteriana se muestran en la Tabla IV. Únicamente se presentan las 18 cepas que dieron resultados positivos frente a alguna de las cepas patógenas, las 19 cepas restantes no fueron activas.

Tabla IV. Cepas con actividad antimicrobiana positiva aisladas de la esponja Mycale sp. Valores promedio (mm) del halo de inhibición ± desviación estándar.

<table>
<thead>
<tr>
<th>Cepa Id</th>
<th>Especie</th>
<th>S. aureus</th>
<th>E. coli</th>
<th>V. carcharie</th>
</tr>
</thead>
<tbody>
<tr>
<td>My0101</td>
<td>Lysobacter capsici M63031</td>
<td>13±1</td>
<td>12±0.8</td>
<td></td>
</tr>
<tr>
<td>My0102</td>
<td>Lysobacter sp. KSA20</td>
<td>15±0.8</td>
<td>12±0.6</td>
<td></td>
</tr>
<tr>
<td>My0108</td>
<td>Alpha proteobacterium JE061</td>
<td>15±0.5</td>
<td>11±0.6</td>
<td></td>
</tr>
<tr>
<td>My0114</td>
<td>Alpha proteobacterium F20</td>
<td>14±0.5</td>
<td>11±1</td>
<td>12±0.5</td>
</tr>
<tr>
<td>My0115</td>
<td>Pseudoalteromonas sp. GAS1</td>
<td>14±0.5</td>
<td>12±0.8</td>
<td>12±0.8</td>
</tr>
<tr>
<td>My0128</td>
<td>Rhodobacteraceae bacterium W97</td>
<td>13±0.5</td>
<td>10±1</td>
<td>13±1.1</td>
</tr>
<tr>
<td>My0135</td>
<td>Alpha proteobacterium CRA 15M</td>
<td>13±0.8</td>
<td>12±0.9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cepa Id</th>
<th>Especie</th>
<th>S. aureus</th>
<th>E. coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>My0104</td>
<td>Bacillus sp. B105</td>
<td>13±0.8</td>
<td></td>
</tr>
<tr>
<td>My0116</td>
<td>Bacillus licheniformis F198_A07</td>
<td>13±0.6</td>
<td>10±0.6</td>
</tr>
<tr>
<td>My0118</td>
<td>Bacillus sp. MOLA 508</td>
<td>13±0.6</td>
<td>10±0.5</td>
</tr>
<tr>
<td>My0123</td>
<td>Bacillus sp. M71_S32</td>
<td>13±0.6</td>
<td>11±0.5</td>
</tr>
<tr>
<td>My0130</td>
<td>Bacillus licheniformis CSMCRI-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>My0131</td>
<td>Bacillus sp. MB127</td>
<td>14±0.5</td>
<td>11±1</td>
</tr>
<tr>
<td>My0132</td>
<td>Bacillus sp. CNJ941 PL04</td>
<td>13±1.3</td>
<td>17±0.5</td>
</tr>
<tr>
<td>My0134</td>
<td>Bacillus sp. MM20</td>
<td>14±0.5</td>
<td>10±0.5</td>
</tr>
<tr>
<td>My0112</td>
<td>Staphylococcus epidermidis CIFRI P-TSB-24</td>
<td>13.5±1.3</td>
<td>11±0.8</td>
</tr>
<tr>
<td>My0106</td>
<td>Halobacillus kuroshimensis HNS013</td>
<td>14±1</td>
<td>12±0.5</td>
</tr>
<tr>
<td>My0125</td>
<td>Halobacillus trueperi HLSB3</td>
<td>12±0.5</td>
<td>11±0.5</td>
</tr>
<tr>
<td></td>
<td>Control positivo Ampicilina</td>
<td>40±0.5</td>
<td>30±1</td>
</tr>
</tbody>
</table>

De las cepas activas, la mayoría inhibió el crecimiento de Staphylococcus aureus, siendo las cepas My0102 (Lysobacter sp.) y My0108 (Alpha proteobacterium F20) las que presentaron los mayores halos de inhibición (15 mm). Mientras que frente a E. coli, la cepa My0132 (Bacillus sp.) fue la que
presentó el mayor halo de inhibición de 17 mm. En los bioensayos frente a diferentes especies del género *Vibrio*, únicamente fueron positivas frente a *V. carcharie*, siendo la cepa My0130 (*Bacillus licheniformis* CSMCRI-6) la que presentó el mejor halo de inhibición (18 mm). En la figura 9 se observan algunos ejemplos de los resultados obtenidos, el halo del centro de cada caja Petri representa el control positivo (antibiótico).

![Imágenes de los bioensayos](attachment:image1.png)

Figura 9. Ejemplos de halos de inhibición de las bacterias asociadas a la esponja *Mycale* sp. frente a las cepas *S. aureus* (a y b), *E. coli* (c) y *V. carcharie* (d).
DISCUSION

Aislamiento de bacterias cultivables asociadas a *Mycale* sp.

De toda la microbiota marina, sólo el 1% es potencialmente cultivable (Sherr & Sherr, 2000), en esta investigación, los aislamientos obtenidos sólo representan al grupo de bacterias heterótrofas cultivables.

Con base en la morfología colonial (elevación, tamaño, forma, pigmentación) y microscópica (forma de la célula, tinción de Gram), se eligieron 37 cepas con morfotipos diferentes de las 50 inicialmente aisladas de la esponja *Mycale* sp. La forma de una colonia varía dependiendo de ciertos factores ambientales como la temperatura de incubación, la edad del cultivo y la composición del medio (Rodríguez et al., 2006).

Las variaciones en el número de cepas susceptibles de ser cultivadas, puede deberse a diferentes factores tanto ambientales como metodológicos; el uso de diferentes medios de cultivo, así como las técnicas de separación de las bacterias del tejido de la esponja puede impactar de manera diferente los resultados obtenidos (Toledo et al., 2006). Resulta evidente que el número de cepas aisladas en este trabajo (37) fue mayor con respecto a estudios similares con esponjas del mismo género. A partir de la esponja *M. adhaerens*, Lee y Qian (2004) aislaron 20 cepas morfológicamente distintas; por otra parte, de la esponja *M. armata* recolectada de los mares de Hawaii, únicamente se aislaron 11 cepas, aun cuando se utilizaron nuevas técnicas de cultivo (Toledo et al., 2006).
Posteriormente Santos et al. (2010) registraron 24 cepas cultivables de *M. sigmatosa* recolectada en Brasil.

De acuerdo con Santavy et al. (1990) el tamaño y la morfología de las bacterias asociadas a esponjas suele ser muy variable, pero con predominancia de las formas de coco y bacilo. Esto concuerda con los resultados obtenidos en este trabajo, ya que las únicas formas que se reportaron fueron de tipo coco y bacilo (Tabla I).

En algunos trabajos se ha observado que las bacterias asociadas a esponjas son Gram negativas, argumento que se sustenta en la dominancia del Fila Proteobacteria dentro de éstas (Santavy et al., 1990; Chelossi et al., 2004). Si bien, en el presente trabajo, el Fila Proteobacteria fue dominante (40%), el resto de las cepas aisladas (60%) pertenecieron a los Fila Firmicutes y Actinobacteria, ambos grupos Gram positivos, lo que dio como resultado (Figura 3) que la mayoría de las cepas asociadas a *Mycale* sp. se caracterizan por ser Gram positivas y con forma de bacilo. La diferencia de los resultados obtenidos con la literatura puede deberse a las diferentes condiciones de cultivo.

El número de unidades formadoras de colonias por gramo de esponja para *Mycale* sp. fue de 2.09×10^7. Meyer y Keuver (2007), con base en el trabajo realizado con la esponja *Polymastia corticata*, argumentan que la densidad de bacterias en un gramo de peso húmedo de esponja puede variar de 10^8 hasta 10^{10}; al comparar este dato con el resultado obtenido en este trabajo se observó que el número de UFC de *Mycale* sp. es menor, sin embargo, la cantidad de UFC
puede variar dependiendo de la especie en cuestión, Muscholl-Silberhorn et al. (2007) reportaron valores de 9.5x10^4 UFC mL^-1 para la esponja Chondrosia reniformis, y 6.3x10^6 UFC mL^-1 para Tethya aurantium. Por otra parte, el conteo total de bacterias presentes en el tejido de una esponja puede superar de uno a tres órdenes de magnitud un conteo total de bacterias presentes en una muestra de agua marina (Friedrich et al., 2001; Webster & Hill, 2001), lo cual se corrobora en este estudio debido a que en el agua de mar circundante a Mycale sp. se contabilizaron 5.8x10^2 UFC mL^-1.

Las bacterias asociadas a las esponjas suelen vivir principalmente fuera de las células del mesohilo del invertebrado, colonizando posteriormente las capas exteriores y superficie de la esponja (Albrechts, 2006). La distribución diferencial de microrganismos es de suponerse, debido a las condiciones micro-ambientales específicas dentro de una sola esponja. Al tratarse de organismos filtradores, el bombeo constante del agua permite un gradiente en la concentración de oxígeno, así mismo la cantidad de luz que reciben tanto las capas exteriores como las interiores y la competencia por la alta densidad poblacional son algunos de los factores que afectan la distribución espacial de sus microorganismos simbiontes (Yang & Li, 2012). A pesar de éstas diferencias, los resultados obtenidos en diversos estudios no ofrecen una respuesta clara, puesto que en lo que respecta a los grupos reportados en el presente trabajo (aisladados del mesohilo), todos los Fila se han encontrado en otros estudios tanto en la corteza como en el mesohilo de la esponja (Meyer & Keuver, 2007; Thiel et al., 2007; Sipkema & Blanch, 2010).
Identificación molecular de las bacterias cultivables asociadas a la esponja *Mycale* sp.

La identificación genética de las 37 cepas aisladas se realizó mediante la secuenciación parcial del gen del ADNr 16S, método aceptado actualmente en la sistemática bacteriana porque ha permitido establecer identidades genéticas así como relaciones evolutivas entre los microorganismos de manera certera (Figura 8) (Ki *et al.*, 2009; Imhoff, 2011; Zhi *et al.*, 2012). La proporción de información contenida en la longitud del número de pares de bases del gen es relativamente alta, aportando buena resolución y árboles filogenéticos con relaciones evolutivas robustas que van desde el nivel Fila hasta Género (Ludwig & Schleifer, 1994; Barraclough *et al.*, 2012). Por otra parte, la presencia de secuencias altamente conservadas (universales) en organismos, así como en secuencias muy variables (específicas) entre especies y grupos bacterianos, ha representado la clave del éxito del uso del gen ribosomal 16S (Olmos, 2004).

Las identidades genéticas obtenidas a partir de las secuencias de las cepas aisladas de *Mycale* sp., fueron agrupadas en un taxón en específico; 29 a nivel Especie, ocho a nivel Clase y una a nivel Familia (Tabla III). Por otra parte los porcentajes de identidad o parentesco se encontraron en un intervalo de 79% a 100% (Tabla II).

En la actualidad un porcentaje de divergencia del 1% entre secuencias del ADNr 16S, indica que se trata de la misma especie (99-100%), mientras que valores menores al 99% hacen referencia a posibles nuevas especies (Schloss &
Handelsman, 2005; Stackebrandt & Ebers, 2006; Barraclough et al., 2012). Este argumento se basa en estudios realizados con el método de hibridación ADN:ADN, el cual mide el grado de relación entre organismos altamente emparentados y proporciona evidencia de que valores de similitud del ARNr 16S por debajo del 99% indican que es poco probable que compartan entre el 60-70% de similitud de ADN (Madigan et al., 2006; Stackebrandt & Ebers, 2006; Kämpfer, 2012).

Únicamente 11 cepas poseen un porcentaje de identidad menor al 99% (Tabla II), por lo que podrían considerarse como nuevas especies, aunque para ratificarlo sería necesario una aproximación taxonómica polifásica, esto es, una combinación de características fenotípicas, genómicas y filogenéticas, que permitan obtener una clasificación adecuada (Otero, 2011; Kämpfer, 2012).

La presencia del grupo Proteobacteria en la microbiota que habita en las esponjas marinas ha sido bien documentada (Burja & Hill, 2001; Li et al., 2007), y las esponjas del género Mycale no han sido la excepción (Mohamed et al., 2008a); se sabe que probablemente la transmisión de estas bacterias sucede por medio de las larvas (Enticknap et al., 2006), o a través de su adquisición directamente de la filtración del agua marina (Lee et al., 2009). Cuando la transmisión de éstas bacterias ocurre de padres a hijos, puede que se trate de cepas específicas entre las esponjas, lo cual significa que probablemente el inquilino y su hospedero han coevolucionado a lo largo del tiempo y que por lo tanto éstas bacterias específicas no se encuentran en la columna de agua circundante, denominándose como
simbiontes verdaderos (Enticknap et al., 2006). Lo cual podría ser el caso de las proteobacterias aisladas de Mycale sp. con número de cepa My0101, My0102, My0105, My0108, My0137, My0110, My0111, My0113, My0114, My0115, My0119, My0121, My0128, My0135 y My0136.

Dentro de este filo, la clase α-proteobacteria es la más comúnmente reportada como dominante en las secuencias genéticas obtenidas de bacterias asociadas a esponjas marinas (Webster et al., 2001; Webster & Hill, 2001; Mohamed et al., 2008a), así como la familia Rhodobacteraceae (Althoff et al., 1998; Toledo et al., 2006) y el género Pseudoalteromonas, cuya presencia ha sido reportada en siete géneros de esponjas diferentes alrededor del mundo (Lafi et al., 2005; Enticknap et al., 2006; Wang et al., 2008) y el cual se cree que juega un papel importante en la salud de la esponja hospedera, puesto que su presencia se limita únicamente a esponjas saludables (Webster et al., 2008).

Le sigue la clase γ-proteobacteria, dentro de la cual tenemos a los géneros Lysobacter (Feby & Nair, 2010; Romanenko et al., 2012), Vibrio (Qian et al., 2006; Feby & Nair, 2010) y Pseudoalteromonas (Thakur & Anil, 2000; Lee & Qian, 2004), los cuales también han sido detectados en las poblaciones bacterianas asociada a las esponjas marinas, e incluso en otros invertebrados marinos.

El rol ecológico que cumplen las proteobacterias asociadas a esponjas aún es incierto; evidencia reciente demuestra su participación en la fijación de nitrógeno, hecho que comúnmente se creía exclusivo de las cianobacterias (Shieh & Lin, 1994; Mohamed et al., 2008b). Por otra parte la producción de N-acil
homoserina lactonas se encuentra íntimamente ligada con la señalización química de poblaciones bacterianas, por lo que se sospecha que las proteobacterias productoras de dicho químico puedan estar involucradas en la regulación de la densidad poblacional, e incluso en el mismo comportamiento de la esponja (Mohamed et al., 2008c)

Existen investigaciones que documentan la presencia de los mismos grupos bacterianos en esponjas del mismo género, aun cuando se encuentran en lugares diferentes (Hentschel et al., 2002). También se ha observado que esponjas de géneros distintos, que habitan una misma área determinada, poseen grupos similares e inclusive iguales (Lafi et al., 2005). Entre estos grupos de bacterias característicos, se colocan los Fila Actinobacteria y Firmicutes, entre otros.

Los actinomicetos son un grupo popular en el aislamiento de bacterias asociadas a esponjas marinas debido a que presentan interesantes actividades biológicas que los hacen candidatos para la búsqueda de productos naturales. Son varios los trabajos que verifican la actividad antibacteriana que posee este grupo en particular (Li & Liu, 2006; Chelossi et al., 2004; Radjasa, 2008 Selvin et al., 2009). El aislamiento y cultivo en el laboratorio de este grupo es de los más complicados, y a pesar de utilizar diferentes medios de cultivo, es poca la diversidad de especies registrada. En el presente trabajo fue posible el aislamiento de ocho cepas pertenecientes al grupo de los actinomicetos, aunque únicamente representan tres géneros, de los cuales ninguno presentó actividad antimicrobiana. Los géneros *Kocuria* y *Microccocus* ya han sido reportados
previamente para la esponja *Mycale adhaerens* (Li, 2009), por otra parte el género *Brachybacterium* es menos común, sin embargo, su presencia ha sido documentada en esponjas del mar de Java (Radjasa, 2007; Sabarathnam *et al.* 2010).

El nicho ecológico que ocupan los actinomicetos en asociación con esponjas marinas es todavía desconocido. Sabarathnam *et al.* (2010) propusieron su participación en el ciclo biogeoquímico del fósforo, siendo las responsables de la solubilización de fosfatos, permitiendo que sean accesibles para su esponja hospedera.

Finalmente el tercer filo reportado en este trabajo (Figura 5) fue Firmicutes. Dentro del cual, el género predominante fue *Bacillus*, con la presencia de 11 cepas (Figura 6). Los bacilos son habitantes comunes tanto en el ambiente marino como en las esponjas, tan solo basta mencionar que se han encontrado en la microbiota asociada a *Dysidea granulosa*, *Sigmadoscia* (*Haliclona*) *fibulata* (Feby & Nair, 2010), *Dysidea avara*, *Craniella australiensis* y *Stelletta tenuis* (Li *et al.*, 2007), entre otras. Para las esponjas del género *Mycale*, Lee *et al.* (2006) reportan la presencia de la especie *Bacillus licheniformes* en *M. adhaerens*, mientras que Wang *et al.* (2008) confirman la existencia de cepas pertenecientes al Filo Firmicutes en general, en la esponja *Mycale armata*.

La presencia del género *Bacillus* en asociación con esponjas marinas es tan común que se ha propuesto su especificidad para éstos invertebrados, además dicho género ha demostrado una eficiente producción de compuestos con
actividad antibacteriana, por lo que se sugiere que evitan la fijación de bacterias en los tejidos superficiales de la esponja (Thakur et al., 2004).

Como se ha mencionado anteriormente, todas las cepas reportadas en el presente estudio, ya han sido aisladas a partir de otras esponjas del género *Mycale* en diferentes mares alrededor del mundo, lo que probablemente signifique que se trata de bacterias simbiontes específicas del género, las cuales poseen roles ecológicos particulares en la esponja que aún son desconocidos y pueden ser el objetivo de futuras investigaciones.

Actividad antibacteriana frente a cepas de bacterias patógenas

La constante competencia a la cual se encuentran sometidas las poblaciones bacterianas que habitan en los tejidos de las esponjas marinas ha provocado reacciones inhibitorias entre microorganismos que se manifiestan mediante la producción de metabolitos activos. La búsqueda y el aislamiento de bacterias marinas productoras de compuestos antimicrobianos en esponjas marinas ha sido la causa de la creciente investigación dirigida por microbiólogos (Radjasa, 2007)

Los metabolitos secundarios entre los que se encuentran los antibióticos, tienen una función protectora en el medio ambiente. Las bacterias desarrollan la capacidad de producir sustancias que eliminan o inhiben el crecimiento de otros microorganismos como un mecanismo de defensa; tales sustancias producidas de
forma natural juegan un papel ecológico importante en el ecosistema marino (Lugioyo et al., 2003). Dentro de los beneficios que recibe una esponja al hospedar bacterias productoras de compuestos antibacteriales encontramos la regulación de la población procariota, la capacidad para competir con otras esponjas, la defensa contra microorganismos epibióticos y el ahorro de energía al no tener que elaborar dichos compuestos activos (Hentschel et al., 2001; Chelossi et al., 2004).

En general, el número de cepas activas que se ha reportado en otras investigaciones suele ser menor a un 10% del total de cepas que se logran cultivar (Chelossi et al., 2004). Zheng et al. (2005) detectaron únicamente ocho cepas activas de un total de 29, así como Santos et al. (2010) reportaron 12 cepas de un total de 158. En nuestro caso, el 48% de las cepas aisladas, de un total de 37, presentaron actividad por lo menos frente a un agente patógeno (Tabla IV), la mayoría de las cepas activas pertenecieron al Filo Firmicutes, mientras que el resto al Filo Proteobacteria.

En general, las bacterias Gram-positivas representan una fuente potencial de sustancias antibióticas como se puede constatar en esta y otras investigaciones, que pudieran resultar incluso nuevas con relación a las producidas por las bacterias terrestres, por estar expuestas a diferentes condiciones ambientales (Fenical & Jensen, 1993).

Las propiedades antimicrobianas y antiepibióticas de cepas pertenecientes al género Bacillus aisladas de diferentes esponjas marinas ha sido bien
documentada (Thakur & Anil, 2000; Hentschel et al., 2001; Zheng et al., 2005; Muscholl-Silberhorn et al., 2007). Kanagasabhapathy et al. (2004), reportaron bacterias Gram positivas, posiblemente pertenecientes al género Bacillus, aisladas de esponjas marinas de la India, con actividad antibacteriana frente a Escherichia coli y Staphylococcus aureus. Posteriormente Kanagasabhapathy, et al. (2005) detectaron actividad inhibitoria de cepas pertenecientes a Bacillus, aisladas de la esponja Pseudoceratina purpurea, frente a cepas consideradas epibióticas. Los autores argumentan que Bacillus es uno de los géneros más destacados en la producción de compuestos activos, incluso se han observado cepas con actividad antifúngica y citotóxica (Zuber et al., 1993; Thakur & Anil, 2000). En los resultados de este trabajo, se observa de manera clara que las cepas aisladas pertenecientes a dicho género (My0104, My0116, My0118, My0123, My0130, My0132, My0134 y My0112) presentaron actividad al menos frente a una cepa de referencia.

En especial, Bacillus licheniformis es una bacteria que se ha caracterizado por su bioactividad y de la cual ya se han obtenido compuestos con actividad antibacteriana y antifúngica (Devi et al., 2010). En este trabajo, B. licheniformis (My0116, My0130) fueron activas frente a E. coli, S. aureus y Vibrio carcharie, presentando uno de los mayores halos de inhibición para éste último.

Por lo que respecta al género Halobacillus (My0106 y My0125), su presencia en la microbiota de las esponjas marinas es poco usual, además de que las cepas que se han obtenido no han presentado ningún tipo de bioactividad (Burja & Hill, 2001; Lee et al., 2006). Sin embargo, en el presente trabajo, dicho
género presentó actividad frente a *E. coli* y *S. aureus*, hecho que concuerda con otros estudios realizados en ambientes marinos (sedimentos y pastos marinos), de los cuales se han logrado aislar cepas con actividad antifúngica (Yang *et al.*, 2002) y antibacteriana (Teasdale *et al.*, 2009).

Las α-proteobacterias también se han destacado por su actividad antibacteriana, en el presente trabajo sólo cuatro cepas (Cepas My0108, My0114 y My0135, Tabla IV) pertenecientes a dicho grupo presentaron actividad inhibitoria frente a *E. coli, S. aureus* y *Vibrio carcharie*. Muscholl-Silberhorn *et al.* (2007) encontraron destacada actividad frente a cepas patógenas (*E. coli, S. aureus, Candida albicans* y *C. glabrata*) por parte de α-proteobacterias aisladas de 10 diferentes especies de esponjas en el mar Adriático; así como Hentschel *et al.* (2001) en cepas aisladas de esponjas del género *Aplysina*.

Dentro de la clase γ-proteobacteria, el género *Pseudoalteromonas* es uno de los más activos, puesto que se han obtenido resultados satisfactorios en pruebas antimicrobianas realizadas en diversos trabajos (Hentschel *et al.*, 2001; Chelossi *et al.*, 2004). En el presente estudio, la cepa My0115 fue activa frente a las tres cepas de referencia utilizadas (Tabla IV). En nuestro país, Cetina *et al.* (2010) aislaron cepas de dicho género provenientes de aguas del Golfo de México, las cuales demostraron poseer una interesante actividad antibacteriana. En contraste, el género *Lysobacter* no es frecuentemente mencionado en trabajos relacionados con poblaciones bacterianas de esponjas, pero su presencia es común en suelos (Romanenko *et al.*, 2012). Aunque las cepas marinas no han demostrado
bioactividad, sus congéneres terrestres han servido para el aislamiento de nuevos antibióticos (Islam, 2007). A diferencia de lo mencionado en la literatura, la cepa My0101 perteneciente al mismo género (Tabla IV) presentó actividad frente a *E. coli* y *S. aureus.*
CONCLUSIONES

- A partir de la esponja *Mycale* sp. de la localidad de Pichilingue dentro de la Bahía de La Paz, B.C.S., se lograron aislar 37 cepas de bacterias asociadas, siendo en su mayoría bacterias Gram positivas con forma de bacilo.

- El número de UFC por gramo de esponja fue de 2.09×10^7, mientras que en el agua de mar se contabilizaron 58×10^2 CFU mL$^{-1}$, esto debido a que el conteo total de bacterias presentes en el tejido de una esponja puede superar de uno a tres órdenes de magnitud un conteo total de bacterias presentes en una muestra de agua marina.

- La mayoría de las cepas identificadas pertenecen al grupo de las proteobacterias, el cual se ha destacado por su predominancia en las comunidades bacterianas asociadas a esponjas, a éste le siguen los grupos Firmicutes y Actinobacteria los cuales, aunque no son dominantes, también son comúnmente observados. Los mejor representados fueron *Bacillus* y *Kocuria* con 11 y 4 cepas respectivamente.

- El 49% de las cepas presento actividad antibacteriana al menos frente a una de las cepas patógenas probadas, porcentaje superior al comúnmente reportado en la literatura.

- La mayoría de las cepas fueron activas frente a *S. aureus* y *E. coli*, con halos de inhibición de entre 15 y 17 mm. Siendo las cepas My0102
(Lysobacter sp.), My0108 (α-proteobacteria) y My0132 (B. licheniformis), las que presentan el mayor potencial antibacteriano. Por otra parte, frente a V. carcharie únicamente cinco cepas fueron activas, siendo la cepa My0130 (B. licheniformis) la que presentó los mejores resultados con halos de inhibición de 18 mm.
BIBLIOGRAFÍA

Otero, J. 2011. *Aislamiento, selección e identificación de Actinomicetos, bacterias fotosintéticas no sulfurosas y bacterias ácido lácticas con potencial*

Sara, M. 1971. Ultrastructural aspects of the symbiosis between two species of the genus Aphanocapsa (Cyanophyceae) and Ircinia variabilis (Demospongiae). Marine Biology, 11: 214–221.

ANEXO I Secuencias parciales del ADNr 16S

Cepa My0101
Secuencia:

TTTACCTTTTCTGGGGCAGCATGGTCTTGGGCTGGGGCAGGGGATTTAGCGACAGGAGGAGGCCGCTTTGAAAGCC
CGCGACGATCGACGTTAGTGGAGGTGGAAAGCCCGCAGAAGACACACACACCGCAGTGGCTGCTGCTTGCTGC
GCTTTGATAGATCAGTCGACGCCGGACTAGCTAGTTGGCGGGGTAAAGGCCCACCAAAGGAAATAACCTCGACT
AAAGCATGGAGGAGCAATCATGATGTAGATATCCTATATAGTCGACGCCCCAAACGATGCAAACTG

Cepa My0102
Secuencia:

TGCAGTCGAACGGCAGCGGGTCCTTCGGGATGCCGGCGAGTGGCGGACGGGTGAGGAATGCGTCGGAATCTGCCTCT
TTGTGGGGGATAACGTAGGGAAACTTACGCTAATACCGCATACGACCTACGGGTGAAAGCCGGGGACCTTCGGGCCTG
GCGCAGAGAGATGAGCCGACGCCGGATTAGCTAGTTGGCGGGGTAAAGGCCCACCAAGGCGACGATCCGTAGCTGGT
CTGAGAGGGATGATCAGCCACACTG

Cepa My0103
Secuencia:

GCAGTGCAACGGCAGCGGGTCTTGGGGCTGGGATGCCGGCAGGGGATTTAGCGACAGGAGGAGGCCGCTTTGAAAGCC
CGCGACGATCGACGTTAGTGGAGGTGGAAAGCCCGCAGAAGACACACACACCGCAGTGGCTGCTGCTTGCTGC
GCTTTGATAGATCAGTCGACGCCGGACTAGCTAGTTGGCGGGGTAAAGGCCCACCAAAGGAAATAACCTCGACT
AAAGCATGGAGGAGCAATCATGATGTAGATATCCTATATAGTCGACGCCCCAAACGATGCAAACTG
Cepa My0104
Secuencia:
TACATGCAAGTCGAGCGAACTGATTTAGAAGCCTTGCTTTCTATGACGTTAGCGGCGGACGGGTGAGTAACACGTGGGAAGCTACCTTGTGGTAGGGAAAACAGTGGAAACGACTGCTAATACCCTATGAGCCCTATGGGGGAGAGATTTATCGCCATGAGATGTGCCCGCGTTAGATTAGCTAGTGAATACTTTTCTTCGCATGAAGATAAGTTGAAAGATGGCTTCTCGCTATCACTTACAGATGGGCCCGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCATAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAACGATGAAGGTCTTCG

Cepa My0105
Secuencia:
CATGCAAGTTCGAACGGATCCTTTCGGGATTAGTGGCAGACGGGTGAGTAACGCGTGGGAAGCTACCTTGTGGTAGGGAAAACAGTGGAAACGACTGCTAATACCCTATGAGCCCTATGGGGGAGAGATTTATCGCCATGAGATGTGCCCGCGTTAGATTAGCTAGTGAATACTTTTCTTCGCATGAAGATAAGTTGAAAGATGGCTTCTCGCTATCACTTACAGATGGGCCCGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCATAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAACGATGAAGGTCTTCG

Cepa My0106
Secuencia:
TGCAAGTTCGAACGGGGAAGCGAAGCGGATCCCTTCGGGGTGAAGCTCGTGGAACGAGCGGCGGACGGGTGAGTAAACACGTGGGCAACCTGCCTGTAAGATCGGAATAACCCCGGGAAACCGGGGCTAATGCCGGTAATACTTTTCTTCGCATGAAGATAAGTTGAAAGATGGCTTCTCGCTATCACTTACAGATGGGCCCGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCATAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAACGATGAAGGTCTTCG
Cepa My0107

Secuencia:

ATGCAGTGACGAGTGAAGCGAGACGCTTGGCGGTATTAGTGAGCAACGCGATTAGTGAGTAAGCTGTGGAATTGATGAGTAAGGAGTTTTAAGTTG44
Cepa My0110
Secuencia:
GTCGAGCTGACTTCTAGTTGAGATCGAGACTGAGTTATCTGAACCTTCGGGGAACGATAACGGCGTCGAGCGGCGGACGGGTGAGTAATGCCTAGGAAATTGCCCTGATGTGGGGGATAACCATTGGAAACGATGGCTAATACCGCATRATGCCTACGGGCCAAAGAGGGGGACTTTCGGGCCTCTCGCGTCAGGATATGCCTAGGTGGGATTAGCTAGTTGGTGAGGTAAGGGCTCACCAAGGCGACGATCCTAGCTGGTCTGAGAGGATGATCAGCCA

Cepa My0111
Secuencia:
GCAGTCGAAACGTCTCTTCTAGTTAGTGGACAGACGTGCTGGAACGGGTGAGTAACGGGAGATCTTGCTGAGAACATCTGGAATGATGTCGAGGAAACATTGTGAGGCTGCTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGGGCAACCCTGATCCAGCCATGCCGCGTGTGTGATGACGGCCTTAGGGTTGTAAAGCACTTTCAGCAGTGAAGATAATGACATTAACTGCAGAAGAAGCCCCGCTAACTCCGTGCAGCAGCCGCGGTAATACGGAGGGTGCGAGCGTTAATCGGAATTACTGGGC

Cepa My0112
Secuencia:
ATGCAGTCGACCGGCAAGCAGAAGGCTTGCTCCTTTGACGTTAGTCGAGACGTCCGGGACGAGGAGTCTGAACAATCTGCAACTTGGGGAACGACTGAGTTATCTGACTTCTTATAGGTTATGATCACAATTCGGGGAAGGATGAAACGGAGCGCTGCTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTAGGGGAATCTTCCGCAATGGGCGAAAGCCTGACCGAGCAACGCCGCGTGAGTGATGAAGGTCTTCGGATCGTAAAACTCTGTATTAGGGAAGAACATACGTGTAAGTAACTATGCACGTCTTGACGGTACCTAATCAGAAAGCCACGGCTAACTACGTGCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGCGCGTAGGCGGTTTTTTAA
GTCAGTGTAGTAAACCCCGAGTCAGCCAATCCATTAG

67
Cepa My0116

Secuencia:

```
CTTCCATTTCGAGCGGAGCATGAGGGCTTTCGCCCCTGGGGAAAGAAGGGGGGGTAAGGAACCTCTGGGCCGGGAAC
CCTTTTAGAAGCGTAGCGACCGGAGGATGGACCCATAGGGGATAATTATTTTGCTCTAAATGGGCCCTTGTTAAATGAC
TTTTGTCTCACTTTATGTTAATTTTAACTCTGGGATTTTGATTGAGTGAAGGTTTATTTTATCCTAAGCTCTTCTTCTAA
CACGTGCAGTAGAACGGAACCCCAAGCCTGAGAGGGGGAACGGCC
```
Cepa My0119

Secuencia:

```
CAGAGTGGCAGGCAACTTGGCCGGAATTAGTGGAAGCTACCTTGTGGTAGGGAACAA
CAGTTGGAAACGACTGCTAATACCCTATGAGCCCTATTGGGGGAAAGATTTATCGCCATGAGATGTGCCCGCGTTAGATT
AGCTAGTTG
```

Cepa My0120

Secuencia:

```
ACTTGGCAATGCAAGTTCGAGCGGAACGAAGTTAACTGAACCTTCGGGGGACGTTAACGGCGTCGAGCGGCGGACGGGTGAGTA
TGCCTGGGAAATTGCCCTGATGTGGGGGATAACCATTGGAAACGATGGCTAATACCGCATAATAGCTTCGGCTCAAAGAG
GGGGGACCTTCGGGCCTCTCGCGTCAGGATATGCCCAGGTGGGATTAGCTAGTTGGTGAGGTAATGGCTCACCAAGGC
AGACGATCTACCTGCTGAGAGGATGATCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATT
GCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTGTGAAGAAGGCCTTCGGGTTGTAAAAGCACTTTCAGTAGA
GGGAAGGCGGTGTAGTTAATAGCTGCATCGTTTGACGTTAGCGACAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATAC
GGAGGGTGCGAAGGAATTACTGGGCGTAAAGCGCATGCAGGTGGTTAGTTAAGTCAGATGTGAAAGC
```

Cepa My0121

Secuencia:

```
ATGCAATGCGACGGAACGAAAGTTAATCTGAACCTTGGCGGGAATTAGTGGAAGCTACCTTGTGGTAGGGAAGCTACCTTGTGGTAGGGAACAA
CAGTTGGAAACGACTGCTAATACCCTATGAGCCCTATTGGGGGAAAGATTTATCGCCATGAGATGTGCCCGCGTTAGATT
AGCTAGTTG
```
Cepa My0122

Secuencia:

ATGCAAGTCGACGGGAAGAATGGGAAGCTTGCTCCCATTTCTCAGCGGCGGACGGGTGAGTAACACGTGGGCAACCTGCCCTACAGACTGGGATAACTCCGGGAAACCGGAGCTAATACCGGGTAATACATAGCATCGCATGATGCAACGTTGAAAGTTGGCCTTTGGCTAACACTGTAGGATGGGCCCGCGGCGCATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGGCCACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGACGAAGGCCTTCGGGTCGTAAAGCTC

Cepa My0123

Secuencia:

ATGCAGTCGAGCGGGAATGGGAAGCTTGCTCCCATTTCTCAGCGGCGGACGGGTGAGTAACACGTGGGCAACCTGCCCTACAGACTGGGATAACTCCGGGAAACCGGAGCTAATACCGGGTAATACATAGCATCGCATGATGCAACGTTGAAAGTTGGCCTTTGGCTAACACTGTAGGATGGGCCCGCGGCGCATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGGCCACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGACGAAGGCCTTCGGGTCGTAAAGCTC

Cepa My0124

Secuencia:

ACATGCAGTCGACGGGAAGAATGGGAAGCTTGCTCCCATTTCTCAGCGGCGGACGGGTGAGTAACACGTGGGCAACCTGCCCTACAGACTGGGATAACTCCGGGAAACCGGAGCTAATACCGGGTAATACATAGCATCGCATGATGCAACGTTGAAAGTTGGCCTTTGGCTAACACTGTAGGATGGGCCCGCGGCGCATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGGCCACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGACGAAGGCCTTCGGGTCGTAAAGCTC

71
Cepa My0125

Secuencia:

```
GCAAGTCAAGAGCGGAGGAAGCGAGTTGCTGGAACAGCGGCGAGCGGACTCTAGGAAATCGGATCAGGGAG
GCAAGTCAAGAGCGGAGGAAGCGAGTTGCTGGAACAGCGGCGAGCGGACTCTAGGAAATCGGATCAGGGAG
GCAAGTCAAGAGCGGAGGAAGCGAGTTGCTGGAACAGCGGCGAGCGGACTCTAGGAAATCGGATCAGGGAG
GCAAGTCAAGAGCGGAGGAAGCGAGTTGCTGGAACAGCGGCGAGCGGACTCTAGGAAATCGGATCAGGGAG
```

Cepa My0126

Secuencia:

```
ATGCAGTCGAACGATGAAGCCCAGCTTGCTGGGTGGATTAGTGGCGAACGGGTGAGTAACACGTGAGTAACCTGCCCTTA
ACTCTG
```

Cepa My0127

Secuencia:

```
GCAGTCGAACGATGAAGCCCAGCTTGCTGGGTGGATTAGTGGCGAACGGGTGAGTAACACGTGAGTAACCTGCCCTTA
ACTCTG
```

72
Cepa My0128
Secuencia:
TCTTACTCCAGGGACCTTGGGATGGCGGAGAAACGCGGAGATTTACTTGTTAGGGAATC
CCATTGGGAAACGGCGACACACATCTCTAGGGCCCTTGAGGAACGTAATGAGTGGGGCCAGTCAATA
TCTGAGTGTACTGTAAGGAAATTCGTAGTATCTGTGGTTGCTTAAGGAGTAACCAAGGCGAGGATGAGG
CCCTATCTGAGATGAGTGGATGGCTTTCACTCGGCAATTTGCGACAGGCTGTGTAC

Cepa My0129
Secuencia:
ATGCAGTCGACCATTCGGCGCGAATACGCTAATTGGGCTTTTGAATTACGCTGAGGATGAGG
CCCTATCTGAGATGAGTGGATGGCTTTCACTCGGCAATTTGCGACAGGCTGTGTAC

Cepa My0130
Secuencia:
ACATGCAAGTCGAGCGGACAGATGGGAGCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACACGTGGGGTAACCT
GCCTATGGCAGTACTGGAATACCTGGGAAACGGCGACACACATCTCTAGGGCCCTTGAGGAACGTAATGAGTGGGGCCAGTCAATA
TCTGAGTGTACTGTAAGGAAATTCGTAGTATCTGTGGTTGCTTAAGGAGTAACCAAGGCGAGGATGAGG
CCCTATCTGAGATGAGTGGATGGCTTTCACTCGGCAATTTGCGACAGGCTGTGTAC

73
Cepa My0131
Secuencia:
ATACATGCAAGTCGAGCGGACAGATGGGAGCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGCTTGATTGAACCGCATGGTTCAATTATAAAGGTGGCTTTTAGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCCTAGCCAACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATAGGTTTTCGGATCGTAAAACTCTGTTGTTAGGGAAGAACAAGTACCGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCCGAAAGCCACGGCTAATACGCTAGTCTGCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGTTTTAAGTCTGATGTGAAAGCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAAGAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGCGCGAAAGCGTGGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCCCGCCGTAACGATGAGTGCTAAGTGTTAGAGGTTTCCGCCCCTTTAGTGCTGCAGCAAACGCATTAGCCACTCCCGCCTGGGGAAGTACGGTCGCACTGAACTCCAAAGGATTGACGGGGGCCCGCCACAGCGGGTGGAGCATGGTGTTTTATTCCGAGCACGCGAGACCTTACCAGTCTGACATCCTCTGACACCCTAGAGATAGGGCTTCCCCTCGGGGCAGATGAAGTGGTGCATGATGTCCGTCCAGCCTCGGTCTGAGATGTTGGGTTAAGTCCGCACGAGCCCACCTTGATCTAGTGCAGCATCAGTGCACTCTAGGTACTCGGTCACGGAAGTGATACTCATCTCATGCCTTGACTGGCTCAACGTACCATGCACACGACGAATCCAGCTAGACTCCAC
TGTTCATTCGTGC

Cepa My0132
Secuencia:
ATGCAGTCGAGCGGACAGATGGGAAGCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGG
GGCTAATACCGGATGCTTGATTGAACCGCATGGTTCAATTATAAAGGTGGCTTTTAGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCCTAGCCAACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATAGGTTTTCGGATCGTAAAACTCTGTTGTTAGGGAAGAACAAGTACCGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCCGAAAGCCACGGCTAATACGCTAGTCTGCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGTTTTAAGTCTGATGTGAAAGCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAAGAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGCGCGAAAGCGTGGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCCCGCCGTAACGATGAGTGCTAAGTGTTAGAGGTTTCCGCCCCTTTAGTGCTGCAGCAAACGCATTAGCCACTCCCGCCTGGGGAAGTACGGTCGCACTGAACTCCAAAGGATTGACGGGGGCCCGCCACAGCGGGTGGAGCATGGTGTTTTATTCCGAGCACGCGAGACCTTACCAGTCTGACATCCTCTGACACCCTAGAGATAGGGCTTCCCCTCGGGGCAGATGAAGTGGTGCATGATGTCCGTCCAGCCTCGGTCTGAGATGTTGGGTTAAGTCCGCACGAGCCCACCTTGATCTAGTGCAGCATCAGTGCACTCTAGGTACTCGGTCACGGAAGTGATACTCATCTCATGCCTTGACTGGCTCAACGTACCATGCACACGACGAATCCAGCTAGACTCCAC
TGTTCATTCGTGC

Cepa My0133
Secuencia:
ATACATGCAAGTCGAGCGGACAGATGGGAGCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGG
GGCTAATACCGGATGCTTGATTGAACCGCATGGTTCAATTATAAAGGTGGCTTTTAGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCCTAGCCAACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATAGGTTTTCGGATCGTAAAACTCTGTTGTTAGGGAAGAACAAGTACCGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCCGAAAGCCACGGCTAATACGCTAGTCTGCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGTTTTAAGTCTGATGTGAAAGCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAAGAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGCGCGAAAGCGTGGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCCCGCCGTAACGATGAGTGCTAAGTGTTAGAGGTTTCCGCCCCTTTAGTGCTGCAGCAAACGCATTAGCCACTCCCGCCTGGGGAAGTACGGTCGCACTGAACTCCAAAGGATTGACGGGGGCCCGCCACAGCGGGTGGAGCATGGTGTTTTATTCCGAGCACGCGAGACCTTACCAGTCTGACATCCTCTGACACCCTAGAGATAGGGCTTCCCCTCGGGGCAGATGAAGTGGTGCATGATGTCCGTCCAGCCTCGGTCTGAGATGTTGGGTTAAGTCCGCACGAGCCCACCTTGATCTAGTGCAGCATCAGTGCACTCTAGGTACTCGGTCACGGAAGTGATACTCATCTCATGCCTTGACTGGCTCAACGTACCATGCACACGACGAATCCAGCTAGACTCCAC
TGTTCATTCGTGC
Cepa My0134
Secuencia:
ATGCAGTCGAGCGGCCAGGAGGATGAGCTGCAAGTCTCAACGGCGATGAGGCTGCTGCCCTG

Cepa My0135
Secuencia:
TGCAGTCGACGGATCCTTCGGGATTGTGGGTGAGGGGTGATGAACGCCTGGGAAGCTACCTTGGGGTAAGGAACCCTTG

Cepa My0136
Secuencia:
AGTCGAGCGGCCAGATCCTGGGATTGTGGGTGAGGGGTGATGAACGCCTGGGAAGCTACCTTGGGGTAAGGAACCCTTG

75
Cepa My0137
Secuencia:
ATGCAGTTCGAACGATCCTTTGGGATTAGTGGGCGAGCGGTGAGTAACGCGTGGGAAGCTACCTTGTGGTAGGGA
ACAACAGTTGGAACGACTGCTAATACCCCTATGAGCCCTATGGGGAAAGATTATATTCGCGAGCTGATCAGGGAAGCTACTGATGAGTTAGCTAGTTGGTAAGGTAATGGCTTACCAAGGCGACGTGCTGGTGAGAATTTTGAAAACTACGCGTTACCTTGTCCGGGAGGCAGCAGTGGGGAATATTGGACAATGGGGGCAACCCTGATCCAGCCA
TGCCGCGTACGTAGTACGGGCCTTAGGTGTTAAGCTACCTTTCGCGAGATCGGACATTTGAATGCGACAGCCGCAATTTAGTGGGCACTCTAGGGGACTGCCGTGATAGCCGAGAAGGTGGGGATGACGTCAAGTCCTCATGCCCTACGCTGGCTACCCACGTGCTACAATTGGCGGTGACAGTTGGCAGCGACCTTCGCGAGGGAGCCTATTCTCAAGCCGTCCTCACTTCGGGAATGTCCTCGCACTCGAGCATGATGGAATCGCATGTATGCCGTAACAACATGACCGGTAACTCGA